

[image: ng-book]

 ng-book

 The Complete Book on AngularJS

 Ari Lerner

© 2013 Ari Lerner

Table of Contents

 	
 Introduction

 	
 Foreword

 	
 Acknowledgments

 	
 About the Author

 	
 About This Book

 	
 Organization of This Book

 	
 Additional Resources

 	
 Conventions Used in This Book

 	
 Development Environment

 	
 The Basics of AngularJS

 	
 How Web Pages Get to Your Browser

 	
 What Is a Browser?

 	
 What Is AngularJS

 	
 Data Binding and Your First AngularJS Web Application

 	
 Introducing Data Binding in AngularJS

 	
 Simple Data Binding

 	
 Best Data Binding Practices

 	
 Modules

 	
 Properties

 	
 Scopes

 	
 The $scope View of the World

 	
 It’s Just HTML

 	
 What Can Scopes Do?

 	
 $scope Lifecycle

 	
 Directives and Scopes

 	
 Controllers

 	
 Controller Hierarchy (Scopes Within Scopes)

 	
 Expressions

 	
 Interpolating a String

 	
 Filters

 	
 Making Our Own Filter

 	
 Form Validation

 	
 Introduction to Directives

 	
 Directives: Custom HTML Elements and Attributes

 	
 Passing Data into a Directive

 	
 Built-In Directives

 	
 Basic ng Attribute Directives

 	
 Directives with Child Scope

 	
 Directives Explained

 	
 Directive Definition

 	
 Directive Scope

 	
 AngularJS Life Cycle

 	
 ngModel

 	
 Angular Module Loading

 	
 Configuration

 	
 Run Blocks

 	
 Multiple Views and Routing

 	
 Installation

 	
 Layout Template

 	
 Routes

 	
 $location Service

 	
 Routing Modes

 	
 Other Advanced Routing Topics

 	
 Dependency Injection

 	
 Annotation by Inference

 	
 Explicit Annotation

 	
 Inline Annotation

 	
 $inject API

 	
 ngMin

 	
 Services

 	
 Registering a Service

 	
 Using Services

 	
 Options for Creating Services

 	
 Communicating with the Outside World: XHR and Server-Side Communication

 	
 Using $http

 	
 Configuration Object

 	
 Response Object

 	
 Caching HTTP Requests

 	
 interceptors

 	
 Configuring the $httpProvider

 	
 Using $resource

 	
 Installation

 	
 Using $resource

 	
 Custom $resource Methods

 	
 $resource Configuration Object

 	
 $resource Services

 	
 Using Restangular

 	
 The What and the Why

 	
 Installation

 	
 Intro to the Restangular Object

 	
 Using Restangular

 	
 Configuring Restangular

 	
 XHR in Practice

 	
 Cross-Origin and Same-Origin Policy

 	
 JSONP

 	
 Using CORS

 	
 Server-Side Proxies

 	
 Working with JSON

 	
 Working with XML

 	
 Authentication with AngularJS

 	
 Talking to MongoDB

 	
 Promises

 	
 What’s a Promise?

 	
 Why Promises?

 	
 Promises in Angular

 	
 Chaining Requests

 	
 Server Communication

 	
 Custom Server-Side

 	
 Install NodeJS

 	
 Install Express

 	
 Calling APIs

 	
 Server-less with Amazon AWS

 	
 AWSJS + Angular

 	
 Getting Started

 	
 Introduction

 	
 Installation

 	
 Running

 	
 User Authorization/Authentication

 	
 UserService

 	
 All Aboard AWS

 	
 AWSService

 	
 Starting on dynamo

 	
 $cacheFactory

 	
 Saving our currentUser

 	
 Uploading to s3

 	
 Handling file uploads

 	
 Querying dynamo

 	
 Showing the listing in HTML

 	
 Selling our work

 	
 Using Stripe

 	
 Server-less with Firebase

 	
 3-Way Data Binding With Firebase and Angular

 	
 Getting Started With AngularFire

 	
 Ordering in AngularFire

 	
 Firebase events

 	
 Implicit Synchronization

 	
 Authentication with AngularFire

 	
 Authentication Events

 	
 Beyond AngularFire

 	
 Testing

 	
 Why test?

 	
 Testing strategies

 	
 Getting started testing

 	
 Types of AngularJS tests

 	
 Getting started

 	
 Initializing Karma config file

 	
 Configuration options

 	
 Using RequireJS

 	
 Jasmine

 	
 Expectations

 	
 End to end introduction

 	
 Mocking and test helpers

 	
 Mocking the $httpBackend

 	
 Testing an app

 	
 Testing events

 	
 Continuous Integration for angular

 	
 Protractor

 	
 Configuration

 	
 Configuration options

 	
 Writing tests

 	
 Page Objects

 	
 Events

 	
 What are events

 	
 Event propagation

 	
 Listening

 	
 Event object

 	
 Core services riding on events

 	
 Architecture

 	
 Directory structure

 	
 Modules

 	
 Controllers

 	
 Directives

 	
 Testing

 	
 Angular Animation

 	
 Installation

 	
 How it works

 	
 Using CSS3 Transitions

 	
 Using CSS3 Animations

 	
 Using JavaScript animations

 	
 Animating built-in directives

 	
 Building custom animations

 	
 Integrating with third-party libraries

 	
 The digest loop and $apply

 	
 $watch list

 	
 Dirty checking

 	
 $watch

 	
 $watchCollection

 	
 The $digest loop in a page

 	
 $evalAsync list

 	
 $apply

 	
 When to use $apply()

 	
 Demystifying angular

 	
 How the view works

 	
 Essential AngularJS extensions

 	
 AngularUI

 	
 Installation

 	
 ui-router

 	
 ui-utils

 	
 Mobile apps

 	
 Responsive web apps

 	
 Interaction

 	
 Native applications with Cordova

 	
 Getting started with Cordova

 	
 Including Angular

 	
 Building with Yeoman

 	
 Localization

 	
 angular-translate

 	
 Installation

 	
 Teaching your app a new language

 	
 Multi-language support

 	
 Switching the language at runtime

 	
 Loading languages

 	
 angular-gettext

 	
 Installation

 	
 Usage

 	
 String extraction

 	
 Translating our strings

 	
 Compiling our new language

 	
 Changing languages

 	
 Caching

 	
 What is a cache

 	
 Angular caching

 	
 Caching through $http

 	
 Setting default cache for $http

 	
 Security

 	
 Strict Contextual Escaping, the $sce service

 	
 Whitelisting urls

 	
 Blacklisting urls

 	
 $sce API

 	
 Configuring $sce

 	
 Trusted context types

 	
 AngularJS and Internet Explorer

 	
 Ajax caching

 	
 SEO with AngularJS

 	
 Getting angular apps indexed

 	
 Server-side

 	
 Options for handling SEO from the server-side

 	
 Taking snapshots

 	
 Using Zombie.js to grab html snapshots

 	
 Using grunt-html-snapshot

 	
 Prerender.io

 	
 <noscript> approach

 	
 Building Angular Chrome apps

 	
 Understanding the Chrome apps

 	
 Building our Chrome app

 	
 Building the skeleton

 	
 manifest.json

 	
 tab.html

 	
 Loading the app in Chrome

 	
 The main module

 	
 Building the homepage

 	
 Sign up for wunderground’s weather API

 	
 A settings screen

 	
 Implementing a User service

 	
 City autofill/autocomplete

 	
 Sprinkling in timezone support

 	
 Optimizing angular apps

 	
 What to optimize

 	
 Optimizing the $digest loop

 	
 Optimizing ng-repeat

 	
 Optimizing the $digest call

 	
 Optimizing $watch functions

 	
 Optimizing filters

 	
 Tips for optimizing page load

 	
 Debugging AngularJS

 	
 Debugging from the DOM

 	
 debugger

 	
 Angular Batarang

 	
 Next steps

 	
 jqLite and jQuery

 	
 Essential tools to know about

 	
 Grunt

 	
 grunt-angular-templates

 	
 Lineman

 	
 Bower

 	
 Yeoman

 	
 Configuring the angular generator

 	
 Testing our app

 	
 Packaging our app

 	
 Packaging our templates

Dedication

I dedicate this book to my parents, Lisa and Nelson Lerner for without their support and encouragement none of this would have been possible.

Special thanks

To the lovely Q for the constant motivation and incredibly talented editing and my cofounder and friend, Nate Murray.

Introduction

Foreword

I’ve become somewhat numb to all of the JavaScript libraries and frameworks being released on a seemingly daily basis. While the ability to choose from a variety of libraries and frameworks is a good thing, including too many scripts in an application can be a bad thing for maintenance – at least in my opinion. I’ve always been concerned about the dependencies that are created as more and more scripts are added into an application and often longed for a single script (or two) that could provide the core functionality I wanted.

When I first heard about AngularJS it caught my attention immediately because it appeared to offer a single framework that could be used to build a variety of dynamic, client-centric applications. After researching it more, my initial impressions were confirmed, and I was hooked. AngularJS includes a robust set of features and offers a way to break up code into modules, which is good for reuse, maintenance, and testability. It provides key features, such as support for DOM manipulation, animations, templating, two-way data binding, routing, history, Ajax, testing, and much more.

While having a core framework to build on is great, it can also be intimidating and challenging to learn. As I dove into AngularJS I became overwhelmed with different topics and quickly became a little frustrated and wondered if it was the framework for me. What was a service, and how was it different from a factory? How did scope fit into the overall picture? What was a directive, and why would I use one? Putting the pieces together and seeing the big picture was the initial hurdle that I had to get over. It definitely would’ve been nice to have a concise resource to consult that flattened out the learning curve.

Fortunately, you have an excellent resource at your disposal in ng-book: The Complete Book on AngularJS that will help make you productive right away. Ari Lerner has taken the knowledge and expertise that he’s gained and laid it out in a way that is easy to follow and understand. If you’re looking to learn more about data binding, how “live” templates work, the process for testing AngularJS applications, the role of services and factories, how scope and controllers fit together, and much more, then you’re in the right place. AngularJS is an extremely powerful and fun framework to work with, and the examples shown throughout this book will help you get up to speed quickly on the framework. Best of luck with your AngularJS development projects!

Dan Wahlin
Wahlin Consulting
http://weblogs.asp.net/dwahlin
http://twitter.com/DanWahlin

Acknowledgments

First, I want to thank everyone who has encouraged me along the way to write this book. Anyone who says authoring a book is easy has not written one him- or herself.

I want to personally thank Q Kuhns for her tireless grammatical editing and support, Erik Trom for his patience and attention to detail, and Nate Murray for his neverending optimism and clarity of thought.

Big thanks go out to the entire Hack Reactor staff and the summer class of 2013 for giving me the space to explore how to teach AngularJS in a formal setting.

I also want to thank my 30x500 alumni, Sean Iams, Michael Fairchild, Bradly Green, Misko Hevery, and the AirPair team.

Lastly, I would very much like to thank all of the help with our public pre-release of the book. We’ve received fantastic help and support from the community. We would like to send special thanks to:

	Philip Westwell

 	Saurabh Agrawal

 	Dougal MacPherson

About the Author

Ari Lerner is the co-founder of fullstack.io, based in San Francisco, CA. He worked at AT&T’s innovation center in Palo Alto, CA, for five years, building large-scale cloud infrastructure and helping architect the bleeding-edge developer center, including designing publicly facing APIs and developer toolsets.

He and his team were featured in the AT&T annual report for 2012 for their work in modernizing the company workflow and internal processes.

He left his job at AT&T to pursue building fullstack.io, a full-stack software development product and services company that specializes in the entire stack, from hardware to the browser.

He lives in San Francisco with his lovely girlfriend and adorable dog.

About This Book

ng-book: The Complete Book on AngularJS is packed with the solutions you need to be an AngularJS ninja. AngularJS is an advanced front-end framework released by the team at Google. It enables you to build a rich front-end experience, quickly and easily.

ng-book: The Complete Guide to AngularJS gives you the cutting-edge tools you need to get up and running on AngularJS and creating impressive web experiences in no time. It addresses challenges and provides real-world techniques that you can use immediately in your web applications.

In this book, we will cover topics that enable you to build professional web apps that perform perfectly. These topics include:

	Interacting with a RESTful web service

 	Building custom reusable components

 	Testing

 	Asynchronous programming

 	Building services

 	Providing advanced visualizations

 	And much more

The goal of this book is not only to give you a deep understanding of how AngularJS works, but also to give you professional snippets of code so that you can build and modify your own applications.

With these tools and tests, you can dive into making your own dynamic web applications with AngularJS while being confident that your applications will be scalable.

Audience

We have written this book for those who have never used AngularJS to build a web application and are curious about how to get started with an awesome JavaScript framework. We assume that you have a working knowledge of HTML and CSS and a familiarity with basic JavaScript (and possibly other JavaScript frameworks).

Organization of This Book

This book covers the basics of getting started and aims to get you comfortable with writing dynamic web applications with AngularJS right away.

Then we’ll take a look at how AngularJS works and what sets it apart from other popular JavaScript web frameworks. We’ll dive deeply into detail about the underpinnings of the flow of an AngularJS application.

Finally, we’ll take all of our knowledge and build a relatively large application.

Additional Resources

We’ll refer to the official documentation on the AngularJS website. The official AngularJS documentation is a great resource, and we’ll be using it quite often.

We suggest that you take a look at the AngularJS API documentation, as it gives you direct access to the recommended methods of writing AngularJS applications. Of course, it also gives you the most up-to-date documentation available.

Conventions Used in This Book

Throughout this book, you will see the following typographical conventions that indicate different types of information:

In-line code references will look like: <h1>Hello</h1>.

A block of code looks like so:

1 var App = angular.module('App', []);
2
3 function FirstCtrl($scope) {
4 $scope.data = "Hello";
5 }

Any command at the command line will look like:

1 $ ls -la

Any command in the developer console in Chrome (the browser with which we will primarily be developing) will look like:

1 > var obj = {message: "hello"};

Important words will be shown in bold.

Tips and tricks will be shown as:

 	
 [image: tip]
 	
 Tip

 Tip: This is a tip message

Warnings and gotchas are shown with the warning sign, like so:

 	
 [image: warning]
 	
 This is a warning

 This is a warning message

We identify errors like so:

 	
 [image: error]
 	
 Error

 This is an error message

Important callout information is noted as:

 	
 [image: information]
 	
 Info

 Info box

Discussion topics are presented as:

 	
 [image: discussion]
 	
 Discussion

 This is a discussion box

Development Environment

In order to write any applications using AngularJS, we first need to have a comfortable development environment. Throughout this book, we’ll be spending most of our time in two places: our text editor and our browser.

We’ll refer to the text editor as your editor throughout the book, while we’ll refer to the browser as the browser. To use this book, we highly recommend you download the Google Chrome browser, as it provides a great development environment using the developer tools.

We’ll only need to install a few libraries to get going. To run our tests, we’ll need the Karma library and nodejs. It’s also a good idea to have git installed, although this is not a strict requirement.

This book won’t cover how to install NodeJS. Visit nodejs.org for more information.

While most of our work will be done in the browser, parts of this book will focus on building RESTful APIs to service our front end with data endpoints.

The Basics of AngularJS

The goal of this chapter is to get you comfortable with the terminology and the technology and to give you an understanding of how AngularJS works. We’ll start putting the pieces together to enable you to build an AngularJS application, even if you’ve never written one before.

How Web Pages Get to Your Browser

Let’s think of the Internet as a post office. When you want to send a letter to your friend, you first write your message on a piece of paper. Then you write your friend’s address on an envelope and place the letter inside of it.

When you drop the letter off at the post office, the mail sorter looks at the postal code and address and tries to find where your friend lives. If she lives in a giant apartment complex, the postal service might deliver the mail to your friend’s front desk and let the building’s employees sort it out by apartments.

The Internet works in a similar way. Instead of a bunch of houses and apartments connected by streets, it is a bunch of computers connected by routers and wire. Every computer has a unique address that tells the network how to reach it.

Similar to the apartment building analogy above, where we have many apartments that share the same address, several computers can exist on the same network or router (as when you connect to WiFi at a Starbucks). In this case, your computer shares the same IP address as the other computers. Your computer can be reached individually, however, by its “internal IP address” (like the apartment number in our analogy), about which the router is aware (as the apartment building employees in our analogy are aware of your friend’s apartment number).

 IP stands for Internet Protocol. An IP address is a numerical identifier assigned to each device participating in a network. Computers, printers, and even cell phones have IP addresses.

 There are two main types of IP addresses: ipv4 and ipv6 addresses. The most common addresses today are ipv4 addresses. These look like 192.168.0.199. Ipv6 addresses look like 2001:0db8:0000:0000:0000:ff00:0042:8329.

When you open your web browser on your computer and type in http://google.com, your web browser “asks” the internet (more precisely, it “asks” a DNS server) where google.com’s address is. If the DNS server knows the IP address you’re looking for, it responds with the address. If not, it passes the request along to other DNS servers until the IP address is found and served to your computer. You can see the DNS server response by typing this code into a terminal:

1 $ dig google.com

 If you are on a Mac, you can open the terminal program called Terminal, usually located in your /Applications/Utilities. If you are using Windows, you can find your terminal by going to the Start Button and typing cmd in the Run option.

Once the DNS server responds with the IP address of the computer you’re trying to reach (i.e., once it finds google.com), it also sends a message to the computer located at that IP address asking for the web page you’re requesting.

 Every path of a web page is written with its own HTML (with a few exceptions). For example, when your browser requests http://google.com, it receives different HTML than if it were to request http://google.com/images.

Now that your computer has the IP address it needs to get http://google.com, it asks the Google server for the HTML it needs to display the page.

Once the remote server sends back that HTML, your web browser renders it (i.e., the browser works to make the HTML look the way google.com is designed to look).

What Is a Browser?

Before we jump straight into our coverage of Angular, it’s important to know what your browser is doing when it renders a web page.

There are many different web browsers; the most common browsers today include Chrome, Safari, Mozilla Firefox, and Internet Explorer. At their core, they all basically do the same thing: fetch web pages and display them to the user.

Your browser gets the HTML text of the page, parses it into a structure that is internally meaningful to the browser, lays out the content of the page, and styles the content before displaying it to you. All of this work happens behind the scenes.

Our goal as web developers is to build the structure and content of our web page so that the browser will make it look great for our users.

With Angular, we’re not only building the structure, but we’re constructing the interaction between the user and our app as a web application.

What Is AngularJS

The official AngularJS introduction describes AngularJS as a:

 client-side technology, written entirely in JavaScript. It works with the long-established technologies of the web (HTML, CSS, and JavaScript) to make the development of web apps easier and faster than ever before.

It is a framework that is primarily used to build single-page web applications. AngularJS makes it easy to build interactive, modern web applications by increasing the level of abstraction between the developer and common web app development tasks.

 The AngularJS team describes it as a “structural framework for dynamic web apps.”

AngularJS makes it incredibly easy to build web applications; it also makes it easy to build complex applications. AngularJS takes care of advanced features that users have become accustomed to in modern web applications, such as:

	Separation of application logic, data models, and views

 	Ajax services

 	Dependency injection

 	Browser history (makes bookmarking and back/forward buttons work like normal web apps)

 	Testing

 	And more

How Is It different?

In other JavaScript frameworks, we are forced to extend from custom JavaScript objects and manipulate the DOM from the outside in. For instance, using jQuery, to add a button in the DOM, we’ll have to know where we’re putting the element and insert it in the appropriate place:

1 var btn = $("<button>Hi</button>");
2 btn.on('click', function(evt) { console.log("Clicked button") });
3 $("#checkoutHolder").append(btn);

Although this process is not complex, it requires the developer to have knowledge of the entire DOM and force our complex logic inside JavaScript code to manipulate a foreign DOM.

AngularJS, on the other hand, augments HTML to give it native Model-View-Controller (MVC) capabilities. This choice, as it turns out, makes building impressive and expressive client-side applications quick and enjoyable.

It enables you, the developer, to encapsulate a portion of your entire page as one application, rather than forcing the entire page to be an AngularJS application. This distinction is particularly beneficial if your workflow already includes another framework or if you want to make a portion of the page dynamic while the rest operates as a static page or is controlled by another JavaScript framework.

Additionally, the AngularJS team has made it a point to keep the library small when compressed, such that it does not impose heavy penalties for using it (the compressed, minified version weighs in under 9KB at the time of this writing). This feature makes AngularJS particularly good for prototyping new features.

License

The AngularJS source code is made freely available on Github under the MIT license. That means you can contribute to the source and help make AngularJS even better.

In order to contribute, the Angular team has made the process relatively straightforward. Any major changes should be discussed on the mailing list https://groups.google.com/forum/?hl=en#!forum/angular, thus making the potential change available for modification, allowing other developers to join in the discussion, and preventing code/work duplication.

More information on the contribution process can be found here: http://docs.angularjs.org/misc/contribute.

Data Binding and Your First AngularJS Web Application

Hello World

The quintessential place to start writing an AngularJS app is with a hello world application. To write our hello world application, we’ll start with the simplest, most basic HTML we can possibly write.

We’ll take a more in-depth look into AngularJS as we dive into the framework. For now, let’s build our hello world application.

 1 <!DOCTYPE html>
 2 <html ng-app>
 3 <head>
 4 <title>Simple app</title>
 5 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.2/angular.js">\
 6 </script>
 7 </head>
 8 <body>
 9 <input ng-model="name" type="text" placeholder="Your name">
10 <h1>Hello {{ name }}</h1>
11 </body>
12 </html>

 [image: Figure 1]Figure 1

Although this demo isn’t incredibly interesting or exciting, it does show one of the most basic and impressive features of AngularJS: data binding.

 	
 [image: information]
 	
 Note that in this chapter, we’re not using best practices for writing controllers yet, as we’re introducing the first core concept. This is the only place in this book where we suggest to use the code snippets as a learning tool, not as a suggestion for production usage.

Introducing Data Binding in AngularJS

In classic web frameworks, such as Rails, the controller combines data from models and mashes them together with templates to deliver a view to the user. This combination produces a single-way view. Without building any custom JavaScript components, the view will only reflect the data the model exposes at the time of the view rendering. At the time of this writing, there are several JavaScript frameworks that promise automatic data binding of the view and the model.

AngularJS takes a different approach. Instead of merging data into a template and replacing a DOM element, AngularJS creates live templates as a view. Individual components of the views are dynamically interpolated live. This feature is arguably one of the most important in AngularJS and allows us to write the hello world app we just wrote in only 10 lines of code without a single line of JavaScript.

This feature works by simply including angular.js in our HTML and explicitly setting the ng-app attribute on an element in the DOM. The ng-app attribute declares that everything inside of it belongs to this Angular app; that’s how we can nest an Angular app inside of a web app. The only components that will be affected by Angular are the DOM elements that we declare inside of the one with the ng-app attribute.

 	
 [image: tip]
 	
 Views are interpolated when the view is evaluated with one or more variable substitutions; the result is that the variables in our string are replaced with values.

 	
 [image: tip]
 	
 For instance, if there is a variable named name and it is equal to “Ari”, string interpolation on a view of "Hello {{ name }}" will return “Hello Ari”.

Automatic data binding gives us the ability to consider the view to be a projection of the model state. Any time the model is changed in the client-side model, the view reflects these changes without writing any custom code. It just works.

In the Model View Controller (or MVC) view of the world, the controller doesn’t have to worry about being in the mix of rendering the view. This fact virtually eliminates the concern of separating view and controller logic, and it has the corollary effect of making testing simple and enjoyable.

 	
 [image: tip]
 	
 MVC is a software architecture pattern that separates representation from user interaction. Generally, the model consists of application data and functions that interact with it, while the view presents this data to the user; the controller mediates between the two.

 	
 [image: tip]
 	
 This separation presentation makes a clear division between objects in our web app so that the view doesn’t need to know how to save an object – it just needs to know how to display it. Meanwhile, the model doesn’t need to interact with the view – it just needs to contain the data and methods to manipulate the view. The controller is where we’ll place the logic to bind the two together.

Without getting into the source (available at AngularJS.org), Angular simply remembers the value that the model contains at any given time (in our example from hello world, the value of name).

When Angular thinks that the value could change, it will call $digest() on the value to check whether the value is “dirty.” Hence, when the Angular runtime is running, it will look for potential changes on the value.

This process is dirty checking. Dirty checking is a relatively efficient approach to checking for changes on a model. Every time there could be a potential change, Angular will do a dirty check inside its event loop (discussed in depth in the under the hood chapter) to ensure everything is consistent.

When using frameworks like KnockoutJS, which attaches a function (known as a change listener) to the change event, the process is significantly more complex and relatively more inefficient. Dealing with change coalescence, dependency tracking, and the multitude of event firing is complex and often causes problems in performance.

 	
 [image: tip]
 	
 Although there are more efficient ways to do it, dirty checking always works in every browser and is predictable. Additionally, a lot of software that needs speed and efficiency uses the dirty checking approach.

AngularJS removes the need to build complex and novel features in JavaScript in order to build fake automatic synchronization in views.

Simple Data Binding

To review the code we just wrote, what we did was bind the “name” attribute to the input field using the ng-model directive on the containing model object ($scope).

All that means is that whatever value is placed in the input field will be reflected in the model object.

 	
 [image: tip]
 	
 The model object that we are referring to is the $scope object. The $scope object is simply a JavaScript object whose properties are all available to the view and with which the controller can interact. Don’t worry if this concept doesn’t make sense quite yet: It’ll make sense with a few examples.

 Bi-directional in this context means that if the view changes the value, the model observes the change through dirty checking, and if the model changes the value, the view update with the change.

To set up this binding, we used the ng-model function on the input, like so:

1 <input ng-model="person.name" type="text" placeholder="Your name">
2 <h1>Hello {{ person.name }}</h1>

Now that we have a binding set up (yes, it’s that easy), we can see how the view changes the model. When the value in the input field changes, the person.name will be updated and the view will reflect the change.

Now we can see that we’re setting up a bi-directional binding purely in the view. To illustrate the bi-directional binding from the other way (back end to front end), we’ll have to dive into Controllers, which we’ll cover shortly.

Just as ng-app declares that all elements inside of the DOM element upon which it is declared belong to the Angular app, declaring the ng-controller attribute on a DOM element says that all of the elements inside of it belong to the controller.

To declare our above example inside of a controller, we’ll change the HTML to look like:

1 <div ng-controller='MyCtrl'>
2 <input ng-model="name" type="text" placeholder="Your name">
3 <h1>Hello {{ name }}</h1>
4 </div>

In this example, we’ll create a clock that will tick every second (as clocks usually do) and change the data on the clock variable:

1 function MyCtrl($scope) {
2 var updateClock = function() {
3 $scope.clock = new Date();
4 };
5 setInterval(function() {
6 $scope.$apply(updateClock);
7 }, 1000);
8 updateClock();
9 };

 	
 [image: information]
 	
 The controller function takes one parameter, the $scope of the DOM element. This $scope object is available on the element and the controller (as we can see), and it will be the bridge by which we’ll communicate from the controller to the view.

In this example, as the timer fires, it will call the updateClock function, which will set the new $scope.clock variable to the current time.

We can show the clock variable that’s attached on the $scope in the view simply by surrounding it in {{ }}:

1 <div ng-controller="MyCtrl">
2 <h5>{{ clock }}</h5>
3 </div>

At this point, our sample web app looks like:

 1 <!doctype html>
 2 <html ng-app>
 3 <head>
 4 <script
 5 src="https://ajax.googleapis.com/ajax/
 6 libs/angularjs/1.2.2/angular.js">
 7 </script>
 8 </head>
 9 <body>
10 <div ng-controller="MyCtrl">
11 <h1>Hello {{ clock.now }}!</h1>
12 </div>
13 <script type="text/javascript">
14 function MyCtrl($scope) {
15 $scope.clock = {};
16 var updateClock = function() {
17 $scope.clock.now = new Date();
18 };
19 setInterval(function() {
20 $scope.$apply(updateClock);
21 }, 1000);
22 updateClock();
23 };
24 </script>
25 </body>
26 </html>

 	
 [image: tip]
 	
 Although the code as it is written above works in a single file, it will become tough to collaborate on the web app with other people or separate out the functionality of the different components. Instead of containing all of our code in the index.html file, it’s usually a good idea to include JavaScript in a separate file.

The above code will change to:

 1 <!doctype html>
 2 <html ng-app>
 3 <head>
 4 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.2/angular.js\
 5 "></script>
 6 </head>
 7 <body>
 8 <div ng-controller="MyCtrl">
 9 <h1>Hello {{ clock.now }}!</h1>
10 </div>
11 <script type="text/javascript" src="js/app.js"></script>
12 </body>
13 </html>

We will place the JavaScript from above in the js/app.js file instead of embedding it directly into the HTML.

 1 // In app.js
 2 function MyCtrl($scope) {
 3 $scope.clock = {};
 4 var updateClock = function() {
 5 $scope.clock.now = new Date();
 6 };
 7 setInterval(function() {
 8 $scope.$apply(updateClock);
 9 }, 1000);
10 updateClock();
11 };

Best Data Binding Practices

Due to the nature of JavaScript itself and how it passes by value vs. reference, it’s considered a best-practice in Angular to bind references in the views by an attribute on an object, rather than the raw object itself.

If we were to apply best practices to the clock example above, we’d change the usage of the clock in our view to:

 1 <!doctype html>
 2 <html ng-app>
 3 <head>
 4 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.2/angular.js\
 5 "></script>
 6 </head>
 7 <body>
 8 <div ng-controller="MyCtrl">
 9 <h1>Hello {{ clock.now }}!</h1>
10 </div>
11 <script type="text/javascript" src="js/app.js"></script>
12 </body>
13 </html>

In this case, rather than updating the $scope.clock every second, we can update the clock.now property. With this optimization, we can then change our back end to reflect the change with:

 1 // In app.js
 2 function MyCtrl($scope) {
 3 $scope.clock = {
 4 now: new Date()
 5 };
 6 var updateClock = function() {
 7 $scope.clock.now = new Date()
 8 };
 9 setInterval(function() {
10 $scope.$apply(updateClock);
11 }, 1000);
12 updateClock();
13 };

 	
 [image: tip]
 	
 It’s a good idea to try to place all of our bindings in the view in this manner.

Modules

In JavaScript, placing functional code in the global namespace is rarely a good idea. It can cause collisions that are tough to debug and cost us precious development time.

When looking at data binding in the previous chapter, we wrote our controllers in the global namespace by defining a single function:

1 function MyCtrl($scope) {
2 var updateClock = function() {
3 $scope.clock = new Date();
4 };
5 setInterval(function() {
6 $scope.$apply(updateClock);
7 }, 1000);
8 updateClock();
9 };

In this chapter, we’ll talk about how to write efficient, production-ready controllers by encapsulating our functionality in a single core unit called a module.

In Angular, a module is the main way to define an AngularJS app. The module of an app is where we’ll contain all of our application code. An app can contain several modules, each one containing code that pertains to specific functionality.

Using modules gives us a lot of advantages, such as:

	Keeping our global namespace clean

 	Making tests easier to write and keeping them clean so as to more easily target isolated functionality

 	Making it easy to share code between applications

 	Allowing our app to load different parts of the code in any order

The Angular module API allows us to declare a module using the angular.module() API method. When declaring a module, we need to pass two parameters to the method. The first is the name of the module we are creating. The second is the list of dependencies, otherwise known as injectables.

1 angular.module('myApp', []);

 	
 [image: information]
 	
 This method is called the setter method for the Angular module; it’s how we define our module.

We can always reference our module by using the same method with only one parameter. For instance, we can reference the myApp module like so:

1 // this method fetches the app
2 angular.module('myApp')

 	
 [image: information]
 	
 This method is known as the getter method, whereby we can get the Angular module for later reference.

From here, we can create our applications on top of the angular.module('myApp') variable.

When writing large applications, we’ll create several different modules to contain our logic. Creating a module for each piece of functionality gives us the advantage of isolation in which to write and test large features. For more information on writing isolated modules per feature, check out the architecture chapter.

Properties

Angular modules have properties that we can use to inspect the module.

name (string)

The name property on the modules gives us the name of the module as a string.

requires (array of strings)

The requires property contains a list of modules (as strings) that the injector loads before the module itself is loaded.

Scopes

Scopes are a core fundamental of any Angular app. They are used all over the framework, so it’s important to know them and how they work.

The scopes of the application refer to the application model. Scopes are the execution context for expressions. The $scope object is where we define the business functinality of the application, the methods in our controllers, and properties in the views.

Scopes serve as the glue between the controller and the view. Just before our app renders the view to the user, the view template links to the scope, and the app sets up the DOM to notify Angular for property changes. This feature makes it easy to account for promises, such as an XHR call, to be fulfilled. See the promises chapter for more details.

Scopes are the source of truth for the application state. Because of this live binding, we can rely on the $scope to update immediately when the view modifies it, and we can rely on the view to update when the $scope changes.

$scopes in AngularJS are arranged in a hierarchical structure that mimics the DOM and thus are nestable: We can reference properties on parent $scopes.

 If you are familiar with JavaScript, then this hierarchical concept shouldn’t be foreign. When we create a new execution context in JavaScript, we create a new function that effectively creates a new “local” context. The Angular concept of $scopes is similar in that as we create a new scope for child DOM elements, we are creating a new execution context for the DOM to live in.

Scopes provide the ability to watch for model changes. They give the developer the ability to propagate model changes throughout the application by using the apply mechanism available on the scope. We define and execute expressions in the context of a scope; it is also from here that we can propagate events to other controllers and parts of the application.

It is ideal to contain the application logic in a controller and the working data on the scope of the controller.

The $scope View of the World

When Angular starts to run and generate the view, it will create a binding from the root ng-app element to the $rootScope. This $rootScope is the eventual parent of all $scope objects.

 The $rootScope object is the closest object we have to the global context in an Angular app. It’s a bad idea to attach too much logic to this global context, in the same way that it’s not a good idea to dirty the JavaScript global scope.

This $scope object is a plain old JavaScript object. We can add and change properties on the $scope object however we see fit.

This $scope object is the data model in Angular. Unlike traditional data models, which are the gatekeepers of data and are responsible for handling and manipulating the data, the $scope object is simply a connection between the view and the HTML. It’s the glue between the view and the controller.

 All properties found on the $scope object are automatically accessible to the view.

For instance, let’s say we have the HTML:

1 <div ng-app="myApp">
2 <h1>Hello {{ name }}</h1>
3 </div>

We can expect the {{ name }} variable to be a property of the containing $scope:

1 angular.module('myApp', [])
2 .run(function($rootScope) {
3 $rootScope.name = "World";
4 });

 [image: Simple $rootScope binding]Simple $rootScope binding

It’s Just HTML

Our app renders our HTML and delivers it to the browser for presentation. This HTML contains all standard HTML elements, both Angular-specific and non-Angular-specific. The elements that do not contain Angular-specific declarations are left unmodified.

1 <h2>Hello world</h2>
2 <h3>Hello {{ name }}</h3>

In the previous example, Angular won’t touch the <h2> element, while it will update the <h3> with any scope modifications.

Through Angular, we can use different types of markup in a template. These types include the following:

	Directives: the attributes or elements that augment the existing DOM element into a reusable DOM component

 	Value bindings: the template syntax {{ }} binds expressions to the view

 	Filters: formatting functions that are available in the view

 	Form controls: user input validation controls

What Can Scopes Do?

Scopes have the following basic functions:

	They provide observers to watch for model changes

 	They provide the ability to propagate model changes through the application as well as outside the system to other components

 	They can be nested such that they can isolate functionality and model properties

 	They provide an execution environment in which expressions are evaluated

The majority of the work we’ll do in developing our Angular app is building out the functionality of a scope.

 Scopes are objects that contain functionality and data to use when rendering the view. It is the single source of truth for all views. You can think of scopes as view models.

Here’s an example of scopes in practice. We’ll set a variable name on the $rootScope and reference it in a view, like so:

1 angular.module("myApp", [])
2 .run(['$rootScope', function($rootScope) {
3 $rootScope.movie = "Duck Tails";
4 }]);

And our view can now reference this movie property to show to the user:

1 <div ng-app="myApp">
2 My favorite childhood movie: {{ movie }}
3 </div>

Instead of placing variables on the $rootScope, we can explicitly create a child $scope object using a controller. We can attach a controller object to a DOM element using the ng-controller directive on a DOM element, like so:

1 <div ng-app="myApp">
2 <div ng-controller="MyController">
3 My favorite childhood movie: {{ movie }}
4 </div>
5 </div>

Now, instead of attaching the movie variable on the $rootScope, we can create a controller that will manage our variable:

1 angular.module("myApp", [])
2 .controller('MyController',
3 ['$scope', function($scope) {
4 $scope.movie = "Duck Tails";
5 }]);

The ng-controller directive creates a new $scope object for the DOM element and nests it in the containing $rootScope.

$scope Lifecycle

When the browser receives a JavaScript callback that executes inside of the Angular execution context (for more information on the Angular execution context, check out the digest loop chapter), the $scope will be made aware of the model mutation.

 	
 [image: information]
 	
 If the callback executes outside of the Angular context, we can force the $scope to have knowledge of the change using the $apply method.

After the expression is evaluated and the $digest loop runs, the $scope’s watch expressions will run dirty checking (see the digest loop for more details on dirty checking).

Creation

When we create a controller or directive, Angular creates a new scope with the $injector and passes this new scope for the controller or directive at runtime.

Linking

When the $scope is linked to the view, all directives that create $scopes will register their watches on the parent scope. These watches watch for and propagate model changes from the view to the directive.

Updating

During the $digest cycle, which executes on the $rootScope, all of the children scopes will perform dirty digest checking. All of the watching expressions are checked for any changes, and the scope calls the listener callback when they are changed.
Destruction

When a $scope is no longer needed, the child scope creator will need to call scope.$destroy() to clean up the child scope.

Note that when a scope is destroyed, the $destroy event will be broadcasted.

Directives and Scopes

Directives, which are used all throughout our Angular apps, generally do not create their own $scopes, but there are cases when they do. For instance, the ng-controller and ng-repeat directives create their own child scopes and attach them to the DOM element.

But before we get too far, let’s take a look at what controllers are and how we can use them in our applications.

Controllers

Controllers in AngularJS exist to augment the view of an AngularJS application. As we saw in our Hello world example application, we did not use a controller, but only an implicit controller.

The controller in AngularJS is a function that adds additional functionality to the scope of the view. We use it to set up an initial state and to add custom behavior to the scope object.

When we create a new controller on a page, Angular passes it a new $scope. This new $scope is where we can set up the initial state of the scope on our controller. Since Angular takes care of handling the controller for us, we only need to write the constructor function.

Setting up an initial controller looks like this:

1 function FirstCtrl($scope) {
2 $scope.message = "hello";
3 }

 	
 [image: discussion]
 	
 It is considered a best-practice to name our controllers [Name]Ctrl in camelcase.

As we can see, Angular will call the controller method when it creates the scope.

The observant reader will notice we created this function in the global scope. Doing so is usually poor form, as we don’t want to dirty the global namespace. To create it more properly, we’ll create a module and then create the controller atop our module, like so:

1 var app = angular.module('app', []);
2 app.controller('FirstCtrl', function($scope) {
3 $scope.message = "hello";
4 });

To create custom actions we can call in our views, we can simply create functions on the scope of the controller. Luckily for us, AngularJS allows our views to call functions on the $scope, just as if we were calling data.

To bind buttons or links (or any DOM element, really), we’ll use another built-in directive, ng-click. The ng-click directive binds the click event to the method (the mouseup browser event) and the method to the DOM element (i.e., when the browser fires a click event on the DOM element, the method is called). Similar to our previous example, the binding looks like:

1 <div ng-controller="FirstCtrl">
2 <h4>The simplest adding machine ever</h4>
3 <button ng-click="add(1)" class="button">Add</button>
4 <a ng-click="subtract(1)" class="button alert">Subtract
5 <h4>Current count: {{ counter }}</h4>
6 </div>

Both the button and the link are bound to an action on the containing $scope, so when they are pressed (clicked), Angular calls the method. Note that when we tell Angular what method to call, we’re putting it in a string with the parentheses (add(1)).

Now, let’s create an action on our FirstCtrl.

1 app.controller('FirstCtrl', function($scope) {
2 $scope.counter = 0;
3 $scope.add = function(amount) { $scope.counter += amount; };
4 $scope.subtract = function(amount) { $scope.counter -= amount; };
5 });

Setting our FirstCtrl in this manner allows us to call add or subtract functions (as we’ve seen above) that are defined on the FirstCtrl scope or a containing parent $scope.

Using controllers allows us to contain the logic of a single view in a single container. It’s good practice to keep slim controllers. One way that we as AngularJS developers can do so is by using the dependency injection feature of AngularJS to access services.

One major distinction between AngularJS and other JavaScript frameworks is that the controller is not the appropriate place to do any DOM manipulation or formatting, data manipulation, or state maintenance beyond holding the model data. It is simply the glue between the view and the $scope model.

Until this point, we’ve only set simple types on the $scope object. AngularJS also makes it possible to set objects on the $scope and show properties in the view.

To do so, we will simply create a person object on the controller MyController that has a single attribute of name:

1 app.controller('MyCtrl', function($scope) {
2 $scope.person = {
3 name: "Ari Lerner"
4 };
5 });

We can access this person object in any child element of the div where ng-controller='MyCtrl' is written because it is on the $scope.

For instance, now we can simply reference person or person.name in our view.

1 <div ng-app="myApp">
2 <div ng-controller="MyController">
3 <h1>{{ person }}</h1>
4 and their name:
5 <h2>{{ person.name }}</h2>
6 </div>
7 </div>

 [image: Controller object]Controller object

As we can see, the $scope object is how we pass along information from the model to the view. It is also how we set up watch events, interact with other parts of the application, and create application-specific logic.

Angular uses scopes to isolate the functionality of the view, controllers, and directives (we’ll cover these later in the book), which makes it very easy to write tests for a specific piece of functionality.

Controller Hierarchy (Scopes Within Scopes)

Every part of an AngularJS application has a parent scope (as we’ve seen, at the ng-app level, this scope is called the $rootScope), regardless of the context within which it is rendered.

 	
 [image: tip]
 	
 There is one exception: A scope created inside of a directive is called the isolate scope.

 [image: Prototypal scope inheritance]Prototypal scope inheritance

With the exception of isolate scopes, all scopes are created with prototypal inheritance, meaning that they have access to their parent scopes. If we are familiar with object-oriented programming, this behavior should look familiar.

By default, for any property that AngularJS cannot find on a local scope, AngularJS will crawl up to the containing (parent) scope and look for the property or method there. If AngularJS can’t find the property there, it will walk to that scope’s parent and so on and so forth until it reaches the $rootScope. If it doesn’t find it on the $rootScope, then it moves on and is unable to update the view.

To see this behavior in action, let’s create a ParentCtrl that contains the user object and a ChildCtrl that wants to reference that object:

 1 app.controller('ParentCtrl', function($scope) {
 2 $scope.person = {greeted: false};
 3 });
 4
 5 app.controller('ChildCtrl', function($scope) {
 6 $scope.sayHello = function() {
 7 $scope.person.name = "Ari Lerner";
 8 $scope.person.greeted = true;
 9 }
10 });

If we bind the ChildCtrl under the ParentCtrl in our view, then the parent of the ChildCtrl’s $scope object will be the ParentCtrl’s $scope object. Due to the prototypal behavior, we can then reference data on the ParentCtrl’s containing $scope on the child scope.

For instance, we can reference the person object that is defined on the ParentCtrl inside the DOM element of the ChildCtrl.

1 <div ng-controller="ParentCtrl">
2 <div ng-controller="ChildCtrl">
3 <a ng-click="sayHello()">Say hello
4 </div>
5 {{ person }}
6 </div>

 [image: Nested controllers]Nested controllers

 	
 [image: tip]
 	
 This nested structure of controllers closely resembles the nested structure of the DOM itself.

As we can see, once we press the button, we can reference the ParentCtrl’s $scope.person value inside the ChildCtrl just as though person was defined in the ChildCtrl’s $scope object.

 [image: Nested prototypal scope inheritance]Nested prototypal scope inheritance

 	
 [image: tip]
 	
 It is a best practice to keep our controllers as slim as possible. It’s bad practice to allow any DOM interaction or data manipulation inside the controller.

 For instance, this example of a thick controller contains a lot of logic for controlling the view, and it manipulates the DOM:

 Thick controller

 1 angular.module('MyCtrl', function($scope) {
 2 $scope.shouldShowLogin = true;
 3 $scope.showLogin = function() {
 4 $scope.shouldShowLogin = !$scope.shouldShowLogin;
 5 }
 6 $scope.clickButton = function() {
 7 $("#btn span").html("Clicked");
 8 }
 9 $scope.onLogin = function(user) {
10 $http({
11 method: 'POST',
12 url: '/login',
13 data: {
14 user: user
15 }
16 }).success(function(data) {
17 // user
18 })
19 }
20 })

 A better designed app would allow directives and services to handle the dirty logic. We can transform our controller using directives and services into a much thinner, more manageable one:

 Thin controller

1 angular.module('MyCtrl', function($scope, UserSrv) {
2 // The content can be controlled by
3 // directives
4 $scope.onLogin = function(user) {
5 UserSrv.runLogin(user);
6 }
7 })

As we previously mentioned, $scopes have the ability to watch for changes of a particular property and react to the change.

Similar to how we can do the same for browser-side JavaScript with addEventListener, the $scope can do the same for AngularJS variables using the $watch() function.

 	
 [image: information]
 	
 For an in-depth look at how $watch works, check out the digest loop chapter.

Expressions

Expressions are used all over AngularJS apps, so it’s important we get a solid understanding of what expressions are and how AngularJS uses and evaluates them.

We’ve seen examples of Angular expressions already. The {{ }} notation for showing a variable attached to a $scope is actually an expression: {{ expression }}. When setting up a $watch, we use an expression (or a function) that Angular will evaluate.

Expressions are roughly similar to the result of an eval(javascript). Angular processes them; therefore, they have these important, distinct properties:

	All expressions are executed in the context of the scope and have access to local $scope variables.

 	An expression doesn’t throw errors if it results in a TypeError or a ReferenceError.

 	They do not allow for any control flow functions (conditionals; e.g., if/else).

 	They can accept a filter and/or filter chains.

Expressions all operate on the containing scope within which they are called. This fact enables us to call variables bound to the containing scope inside of an expression, which, in turn, enables us to loop over variables (we’ll see this looping in action with ng-repeat), call a function, or use variables for math expressions from the scope.

Parsing an Angular Expression

Although your Angular app will run parse for you automatically when running the $digest loop, sometimes it’s useful to parse an Angular expression manually.

Angular evaluates expressions by an internal service (called the $parse service) that has knowledge of the current scope. This setup gives us access to the raw JavaScript data and functions that are defined on our $scope.

To manually parse an expression, we can inject the $parse service into a controller and call the service to do the parsing for us. For instance, if we have an input box in our page that’s bound to the expr variable, like so:

1 <div ng-controller="MyCtrl">
2 <input ng-model="expr"
3 type="text"
4 placeholder="Enter an expression" />
5 <h2>{{ parsedValue }}</h2>
6 </div>

In MyCtrl, we can then set a $watch and parse the expression expr.

 1 angular.module("myApp", [])
 2 .controller('MyCtrl',
 3 ['$scope', '$parse', function($scope, $parse) {
 4 $scope.$watch('expr', function(newVal, oldVal, scope) {
 5 if (newVal !== oldVal) {
 6 // Let's set up our parseFun with the expression
 7 var parseFun = $parse(newVal);
 8 // Get the value of the parsed expression
 9 $scope.parsedValue = parseFun(scope);
10 }
11 });
12 }]);

Interpolating a String

Although it’s uncommon to need to manually interpolate a string template in Angular, we do have the ability to manually run the template compilation.

To run an interpolation on a string template, we need to inject the $interpolate service in our object. In this example, we’ll inject it into a controller:

1 angular.module('myApp', [])
2 .controller('MyCtrl',
3 ['$scope', '$interpolate',
4 function($scope, $interpolate) {
5 // We have access to both the $scope
6 // and the $interpolate services
7 }]);

The $interpolate service takes up to three parameters, with only one required function.

	text (string) - The text with markup to interpolate.

 	mustHaveExpression (boolean) - If we set parameter to true, then the text will return null if there is no expression.

 	trustedContext (string) - Angular sends the result of the interpolation context through the $sce.getTrusted() method, which provides strict contextual escaping.

 	
 [image: information]
 	
 See $sce for more details about the last parameter.

The $interpolate service returns an interpolation function that takes a context object against which the expressions are evaluated.

With these parameters set up, we can now run an interpolation inside the controller. For instance, let’s say we want to show live editing of the body of text in an email: We can run an interpolation when the text changes to show the given output.

1 <div id="emailEditor">
2 <input ng-model="to"
3 type="email"
4 placeholder="Recipient" />
5 <textarea ng-model="emailBody"></textarea>
6 </div>
7 <div id="emailPreview">
8 <pre>{{ previewText }}</pre>
9 </div>

In our controller, we set up a $watch to monitor changes on the email body and interpolate the emailBody into our previewText property.

 1 angular.module('myApp')
 2 .controller('MyCtrl',
 3 ['$scope', '$interpolate',
 4 function($scope, $interpolate) {
 5 // Set up a watch
 6 $scope.$watch('emailBody', function(body) {
 7 if (body) {
 8 var template = $interpolate(body);
 9 $scope.previewText =
10 template({to: $scope.to});
11 }
12 });
13 }]);

If it’s desirable to use different beginning and ending symbols in our text, we can modify them by configuring the $interpolateProvider.

To modify the beginning string, we can set the starting symbol with the startSymbol() method.

The startSymbol() takes a single argument:

	value (string) - the value to set the starting symbol

To modify the ending symbol, we can use the endSymbol() function. This function takes a single argument, as well:

	value (string) - the value to set the end symbol

To modify the starting symbol, we can create a new module and inject the $interpolateProvider into the config() function.

We’ll also create a service, which we will cover in depth in the services chapter.

 1 angular.module('emailParser', [])
 2 .config(['$interpolateProvider',
 3 function($interpolateProvider) {
 4 $interpolateProvider.startSymbol('__');
 5 $interpolateProvider.endSymbol('__');
 6 }])
 7 .factory('EmailParser', ['$interpolate',
 8 function($interpolate) {
 9 // a service to handle parsing
10 return {
11 parse: function(text, context) {
12 var template = $interpolate(text);
13 return template(context);
14 }
15 }
16 }]);

Now that we have created this module, we can inject it into our app and run the email parser on the text in our email body:

 1 angular.module('myApp', ['emailParser'])
 2 .controller('MyCtrl',
 3 ['$scope', 'EmailParser',
 4 function($scope, EmailParser) {
 5 // Set up a watch
 6 $scope.$watch('emailBody', function(body) {
 7 if (body) {
 8 $scope.previewText =
 9 EmailParser.parse(body, {
10 to: $scope.to
11 });
12 }
13 });
14 }]);

Now, instead of requiring the text to use the default syntax with the {{ }} symbols, we can define our symbols to use __ instead.

As we’re setting the symbols to __ on either side, we’ll need to change the HTML to use this syntax instead of {{ }}:

1 <div id="emailEditor">
2 <input ng-model="to"
3 type="email"
4 placeholder="Recipient" />
5 <textarea ng-model="emailBody"></textarea>
6 </div>
7 <div id="emailPreview">
8 <pre>__ previewText __</pre>
9 </div>

 [image: Interpolation]Interpolation

Filters

In AngularJS, a filter provides a way to format the data we display to the user. Angular gives us several built-in filters as well as an easy way to create our own.

We invoke filters in our HTML with the | (pipe) character inside the template binding characters {{ }}. For instance, let’s say we want to capitalize our string. We can either change all the characters in a string to be capitalized, or we can use a filter.

1 {{ name | uppercase }}

We can also use filters from within JavaScript by using the $filter service. For instance, to use the uppercase JavaScript filter:

1 app.controller('DemoCtrl', ['$scope', '$filter',
2 function($scope, $filter) {
3
4 $scope.name = $filter('lowercase')('Ari');
5 }]);

To pass an argument to a filter in the HTML form, we pass it with a colon after the filter name (for multiple arguments, we can simply append a colon after each argument). For example, the number filter allows us to limit the number of decimal places a number can show. To pass the argument 2, we’ll append :2 to the number filter:

1 <!-- Displays: 123.46 -->
2 {{ 123.456789 | number:2 }}

We can use multiple filters at the same time by using two or more pipes. We’ll see such an example in a minute when we build a custom filter. Before we get to that, however, let’s look at the built-in filters that come out of the box with AngularJS.

currency

The currency filter formats a number as currency. In other words, 123 as currency looks like: {{ 123 | currency }}.

Currency gives us the option of displaying a currency symbol or identifier. The default currency option is that of the current locale; however, we can pass in a currency to display.

date

The date filter allows us to format a date based upon a requested format style. The date formatter provides us several built-in options. If no date format is passed, then it defaults to showing mediumDate (as you can see below).

Here are the built-in localizable formats:

1 {{ today | date:'medium' }} <!-- Aug 09, 2013 12:09:02 PM -->
2 {{ today | date:'short' }} <!-- 8/9/13 12:09 PM -->
3 {{ today | date:'fullDate' }} <!-- Thursday, August 09, 2013 -->
4 {{ today | date:'longDate' }} <!-- August 09, 2013 -->
5 {{ today | date:'mediumDate' }} <!-- Aug 09, 2013 -->
6 {{ today | date:'shortDate' }} <!-- 8/9/13 -->
7 {{ today | date:'mediumTime' }} <!-- 12:09:02 PM -->
8 {{ today | date:'shortTime' }} <!-- 12:09 PM -->

The date formatter also enables us to customize your date format to our own liking. We can combine and chain together these format options to create one single date format, as well:

Year Formatting

1 Four-digit year: {{ today | date:'yyyy' }} <!-- 2013 -->
2 Two-digit padded year: {{ today | date:'yy' }} <!-- 13 -->
3 One-digit year: {{ today | date:'y' }} <!-- 2013 -->

Month Formatting

1 Month in year: {{ today | date:'MMMM' }} <!-- August -->
2 Short month in year: {{ today | date:'MMM' }} <!-- Aug -->
3 Padded month in year: {{ today | date:'MM' }} <!-- 08 -->
4 Month in year: {{ today | date:'M' }} <!-- 8 -->

Day Formatting

1 Padded day in month: {{ today | date:'dd' }} <!-- 09 -->
2 Day in month: {{ today | date:'d' }} <!-- 9 -->
3 Day in week: {{ today | date:'EEEE' }} <!-- Thursday -->
4 Short day in week: {{ today | date:'EEE' }} <!-- Thu -->

Hour Formatting

1 Padded hour in day: {{ today | date:'HH' }} <!-- 00 -->
2 Hour in day: {{ today | date:'H' }} <!-- 0 -->
3 Padded hour in am/pm: {{ today | date:'hh' }} <!-- 12 -->
4 Hour in am/pm: {{ today | date:'h' }} <!-- 12 -->

Minute Formatting

1 Padded minute in hour: {{ today | date:'mm' }} <!-- 09 -->
2 Minute in hour: {{ today | date:'m' }} <!-- 9 -->

Second Formatting

1 Padded second in minute: {{ today | date:'ss' }} <!-- 02 -->
2 Second in minute: {{ today | date:'s' }} <!-- 2 -->
3 Padded millisecond in second: {{ today | date:'.sss' }} <!-- .995 -->

String Formatting

1 am/pm character: {{ today | date:'a' }} <!-- AM -->
2 4-digit representation of time zone offset: {{ today | date:'Z' }} <!-- -0700 -->

Some examples of custom date formatting:

1 {{ today | date:'MMM d, y' }} <!-- Aug 09, 2013 -->
2 {{ today | date:'EEEE, d, M' }} <!-- Thursday, 9, 8 -->
3 {{ today | date:'hh:mm:ss.sss' }} <!-- 12:09:02.995 -->

filter

The filter filter selects a subset of items from an array of items and returns a new array. This filter is generally used as a way to filter out items for display. For instance, when using client-side searching, we can filter out items from an array immediately.

The filter method takes a string, object, or function that it will run to select or reject array elements.

If the first parameter passed in is a:

string

It will accept all elements that match against the string. If we want all the elements that do not match the string, we can prepend a ! to the string.

object

It will compare objects that have a property name that matches, as with the simple substring match if only a string is passed in. If we want to match against all properties, we can use the $ as the key.

function

It will run the function over each element of the array, and the results that return as non-falsy will appear in the new array.

For instance, selecting all of the words that have the letter e in them, we could run our filter like so:

1 {{ ['Ari', 'Lerner', 'Likes', 'To', 'Eat', 'Pizza'] | filter:'e' }}
2 <!-- ["Lerner","Likes","Eat"] -->

If we want to filter on objects, we can use the the object filter notation as we discussed above. For instance, if we have an array of people objects with a list of their favorite foods, we could filter them like so:

 1 {{ [{
 2 'name': 'Ari',
 3 'City': 'San Francisco',
 4 'favorite food': 'Pizza'
 5 }, {
 6 'name': 'Nate',
 7 'City': 'San Francisco',
 8 'favorite food': 'indian food'
 9 }] | filter:{'favorite food': 'Pizza'} }}
10 <!-- [{"name":"Ari","City":"San Francisco","favorite food":"Pizza"}] -->

We can also filter based on a function that we define (in this example, on the containing $scope object):

1 {{ ['Ari', 'likes', 'to', 'travel'] | filter:isCapitalized }}
2 <!-- ["Ari"] -->

The isCapitalized function, which returns true if the first character is a capital letter and false if it is not, is defined as:

1 $scope.isCapitalized =
2 function(str) { return str[0] == str[0].toUpperCase(); }

We can also pass a second parameter into the filter method that will be used to determine if the expected value and the actual value should be considered a match.

If the second parameter passed in is:

true

It runs a strict comparison of the two using angular.equals(expected, actual).

false

It looks for a case-insensitive substring match.

function

It runs the function and accepts an element if the result of the function is truthy.

json

The json filter will take a JSON, or JavaScript object, and turn it into a string. This transformation is very useful for debugging purposes:

1 {{ {'name': 'Ari', 'City': 'San Francisco'} | json }}
2 <!--
3 {
4 "name": "Ari",
5 "City": "San Francisco"
6 }
7 -->

limitTo

The limitTo filter creates a new array or string that contains only the specified number of elements, either taken from the beginning or end, depending on whether the value is positive or negative.

 If the limit exceeds the value of the string, then the entire array or string will be returned.

For instance, we can take the first three letters of a string:

1 {{ San Francisco is very cloudy | limitTo:3 }}
2 <!-- San -->

Or we can take the last 6 characters of a string:

1 {{ San Francisco is very cloudy | limitTo:-6 }}
2 <!-- cloudy -->

We can do the same with an array. Here we’ll return only the first element of the array:

1 {{ ['a', 'b', 'c', 'd', 'e', 'f'] | limitTo:1 }}
2 <!-- ["a"] -->

lowercase

The lowercase filter simply lowercases the entire string.

1 {{ "San Francisco is very cloudy" | lowercase }}
2 <!-- san francisco is very cloudy -->

number

The number filter formats a number as text. It can take a second parameter (optional) that will format the number to the specified number of decimal places (rounded).

 If a non-numeric character is given, it will return an empty string.

1 {{ 123456789 | number }}
2 <!-- 1,234,567,890 -->
3 {{ 1.234567 | number:2 }}
4 <!-- 1.23 -->

orderBy

The orderBy filter orders the specific array using an expression.

The orderBy function can take two parameters: The first one is required, while the second is optional.

The first parameter is the predicate used to determine the order of the sorted array.

If the first parameter passed in is a(n):

function

It will use the function as the getter function for the object.

string

It will parse the string and use the result as the key by which to order the elements of the array. We can pass either a + or a - to force the sort in ascending or descending order.

array

It will use the elements as predicates in the sort expression. It will use the first predicate for every element that is not strictly equal to the expression result.

The second parameter controls the sort order of the array (either reversed or not).

For instance, let’s sort an array of objects by their name. Say we have an array of people, we can order the array of objects with the +name value:

 1 {{ [{
 2 'name': 'Ari',
 3 'status': 'awake'
 4 }, {
 5 'name': 'Q',
 6 'status': 'sleeping'
 7 }, {
 8 'name': 'Nate',
 9 'status': 'awake'
10 }] | orderBy: '+name' }}
11 <!--
12 [
13 {"name":"Ari","status":"awake"},
14 {"name":"Nate","status":"awake"},
15 {"name":"Q","status":"sleeping"}
16]
17 -->

We can also reverse-sort the object. For instance, reverse-sorting the previous object, we simply add the second parameter as true:

 1 {{ [{
 2 'name': 'Ari',
 3 'status': 'awake'
 4 }, {
 5 'name': 'Q',
 6 'status': 'sleeping'
 7 }, {
 8 'name': 'Nate',
 9 'status': 'awake'
10 }] | orderBy:'name':true }}
11 <!--
12 [
13 {"name":"Q","status":"sleeping"},
14 {"name":"Nate","status":"awake"},
15 {"name":"Ari","status":"awake"}
16]
17 -->

uppercase

The uppercase filter simply uppercases the entire string:

1 {{ "San Francisco is very cloudy" | uppercase }}
2 <!-- SAN FRANCISCO IS VERY CLOUDY -->

Making Our Own Filter

As we saw above, it’s really easy to create our own custom filter. To create a filter, we put it under its own module. Let’s create one together: a filter that capitalizes the first character of a string.

First, we need to create it in a module that we’ll require in our app (this step is good practice):

1 angular.module('myApp.filters', [])
2 .filter('capitalize', function() {
3 return function(input) {}
4 });

Filters are just functions to which we pass input. In the function above, we simply take the input as the string on which we are calling the filter. We can do some error checking inside the function:

1 angular.module('myApp.filters', [])
2 .filter('capitalize', function() {
3 return function(input) {
4 // input will be the string we pass in
5 if (input)
6 return input[0].toUpperCase() +
7 input.slice(1);
8 }
9 });

Now, if we want to capitalize the first letter of a sentence, we can first lowercase the entire string and then capitalize the first letter with our filter:

1 <!-- Ginger loves dog treats -->
2 {{ 'ginger loves dog treats' | lowercase | capitalize }}

Form Validation

When taking input from our users, it’s important to show visual feedback on their input. In the context of human relationships, form validation is just as much about giving feedback as well as getting the “right” input.

Not only does it provide positive feedback for our user, it will also semi-protect our web app from bad or invalid input. We can only protect our back end as much as is possible with our web front end.

Out of the box, AngularJS supports form validation with a mix of the HTML5 form validation inputs as well as with its own validation directives.

There are many form validation directives available in AngularJS. We’ll talk about a few of the core validations, then we’ll get into how to build your own validations. Later, in the Our App chapter, we’ll touch on validations again when we build them into our app.

1 <form name="form">
2 <label name="email">Your email</label>
3 <input type="email" name="email" ng-model="email" placeholder="Email Address" />
4 </form>

AngularJS makes it pretty easy for us to handle client-side form validations without adding a lot of extra effort. Although we can’t depend on client-side validations to keep our web application secure, they do provide instant feedback of the state of the form.

To use form validations, we first must ensure that the form has a name associated with it, like in the above example.

All input fields can validate against some basic validations, like minimum length, maximum length, etc. These are all available on the new HTML5 attributes of a form.

It is usually a great idea to use the novalidate flag on the form element, as it prevents the browser from submitting the form.

Let’s look at all the validation options we have that we can place on an input field:

Required

To validate that a form input has been filled out, we simply add the HTML5 tag, required, to the input field:

1 <input type="text" required />

Minimum Length

To validate that a form input input is at least a certain {number} of characters, we add the AngularJS directive ng-minlength="{number}" to the input field:

1 <input type="text" ng-minlength=5 />

Maximum Length

To validate that a form input is equal to or less than a number of characters, we can add the AngularJS directive ng-maxlength="{number}":

1 <input type="text" ng-maxlength=20 />

Matches a Pattern

To ensure that an input matches a regex pattern, we use the AngularJS directive: ng-pattern="/PATTERN/":

1 <input type="text" ng-pattern="/a-zA-Z/" />

Email

To validate an email address in an input field, we simply set the input type to email, like so:

1 <input type="email" name="email" ng-model="user.email" />

Number

To validate an input field has a number, we set the input type to number:

1 <input type="number" name="email" ng-model="user.age" />

URL

To validate that an input represents a URL, set the input type to url:

1 <input type="url" name="homepage" ng-model="user.facebook_url" />

Custom Validations

AngularJS makes it very easy to add our own validations, as well, by using directives. For instance, let’s say that we want to validate that our username is available in the database. To do so, we’ll implement a directive that fires an Ajax request whenever the form changes.

 1 var app = angular.module('validationExample', []);
 2
 3 app.directive('ensureUnique', ['$http', function($http) {
 4 return {
 5 require: 'ngModel',
 6 link: function(scope, ele, attrs, c) {
 7 scope.$watch(attrs.ngModel, function() {
 8 $http({
 9 method: 'POST',
10 url: '/api/check/' + attrs.ensureUnique,
11 data: {'field': attrs.ensureUnique}
12 }).success(function(data, status, headers, cfg) {
13 c.$setValidity('unique', data.isUnique);
14 }).error(function(data, status, headers, cfg) {
15 c.$setValidity('unique', false);
16 });
17 });
18 }
19 }
20 }]);

Control Variables in Forms

AngularJS makes properties available on the containing $scope object available to us as a result of setting a form inside the DOM. These properties enable us to react to the form in real time (just like everything else in AngularJS). The properties that are available to us are:

(Note that these properties are made available to us in the format:)

1 formName.inputFieldName.property

Unmodified Form

This property is a boolean that tells us whether the user has modified the form. It is true if the user hasn’t touched the form, and false if they have:

1 formName.inputFieldName.$pristine;

Modified Form

This property is a boolean that tells us if and only if the user has actually modified the form. It is set regardless of validations on the form:

1 formName.inputFieldName.$dirty

Valid Form

This property is a boolean that tells us whether or not the form is valid. If the form is currently valid, then the following will be true:

1 formName.inputFieldName.$valid

Invalid Form

This property is a boolean that tells us whether or not the form is invalid. If the form is currently invalid, then the following will be true:

1 formName.inputFieldName.$invalid

The last two properties are particularly useful for showing or hiding DOM elements. They are also very useful when setting a class on a particular form.

Errors

This property is another useful one that AngularJS makes available to us: the $error object. This object contains all of the validations on a particular form and a record of whether they are valid or invalid. To get access to this property, use the following syntax:

1 formName.inputfieldName.$error

If a validation fails, then this property will be true; if it is false, then the value has passed the input field.

A Little Style Never Hurts

When AngularJS is handling a form, it adds specific classes to the form based upon their state. These classes are named similarly to the properties that we can check, as well.

These classes are:

1 .ng-pristine {}
2 .ng-dirty {}
3 .ng-valid {}
4 .ng-invalid {}

They correspond to their counterpart on the particular input field.

When a field is invalid, the .ng-invalid class will be applied to the field. This particular site sets the CSS class as:

1 input.ng-invalid {
2 border: 1px solid red;
3 }
4 input.ng-valid {
5 border: 1px solid green;
6 }

$parsers

When our user interacts with the controller and the $setViewValue() method has been called on the ngModelController, the array of $parsers functions are called as a pipeline. The first $parser is called and passes its value to the next, and so on and so forth.

These functions have the opportunity to convert the value and change the validity state of the control by using the $setValidity() functions.

Using the $parsers array is one way we can create a custom validation. For instance, let’s say we want to confirm a value is between two numbers. We’ll push a new function on the $parsers array that is called in the validation chain.

If we return a value from our function, then the value will be passed down the chain to the next parser; however, if we return undefined, then the $parsers pipeline will stop. We return undefined if we don’t want the model to update.

 1 angular.module('myApp')
 2 .directive('oneToTen', function() {
 3 return {
 4 require: '?ngModel',
 5 link: function(scope, ele, attrs, ngModel) {
 6 if (!ngModel) return;
 7 ngModel.$parsers.unshift(
 8 function(viewValue) {
 9 var i = parseInt(viewValue);
10
11 if (i >= 0 && i < 10) {
12 ngModel.$setValidity('oneToTen', true);
13 return viewValue;
14 } else {
15 ngModel.$setValidity('oneToTen', false);
16 return undefined;
17 }
18 });
19 }
20 };
21 });

$formatters

When the bound ngModel value has changed and has been run through the $parsers array, then the value will be passed through to the $formatters pipeline. These functions have the opportunity to modify and format the value, as well as change the validity state of the control similar to the $parsers array.

We use these functions primarily to handle visual changes in the view, rather than purely for validation purposes. For instance, let’s say we want to call a formatter on a value. Using the $formatters array, we can set a filter to run on the value:

 1 angular.module('myApp')
 2 .directive('oneToTen', function() {
 3 return {
 4 require: '?ngModel',
 5 link: function(scope, ele, attrs, ngModel) {
 6 if (!ngModel) return;
 7
 8 ngModel.$formatters.unshift(function(v) {
 9 return $filter('number')(v);
10 });
11 }
12 };
13 });

Putting It All Together

Let’s build a signup form. This signup form will include person’s name, his or her email, and a desired username.

Let’s start by looking at what the form will look like when it’s done:

 [image: Signup form]Signup form

 Play with it

Let’s start by defining the form:

1 <form name="signup_form" novalidate ng-submit="signupForm()">
2 <fieldset>
3 <legend>Signup</legend>
4
5 <button type="submit" class="button radius">Submit</button>
6 </fieldset>
7 </form>

This form’s name is signup_form, and we are going to call signupForm() when the form is submitted.

Now, let’s add the name of the user:

 1 <div class="row">
 2 <div class="large-12 columns">
 3 <label>Your name</label>
 4 <input type="text"
 5 placeholder="Name"
 6 name="name"
 7 ng-model="signup.name"
 8 ng-minlength=3
 9 ng-maxlength=20 required />
10 </div>
11 </div>

We’ll discuss styling in a future chapter, but we’ll include styles in this chapter as an introduction. We’re using the Foundation framework in this chapter for CSS layouts.

We’ve added a form that has an input field called name that is bound (by ng-model) to the object signup.name on the $scope object.

 	
 [image: information]
 	
 Don’t forget to add a name to the input field. Adding a name to the input is important: That is how we’ll reference the form input when showing validation messages to the user.

We’ve also set up a few validations. These validations say we have to have a minlength of three or more characters in our name. We also impose a maximum limit of 20 characters (meaning the input will be invalid at 21 characters and higher). Lastly, we’ve required that the name be filled out for the form to be valid.

Let’s use the properties to show and/or hide a list of errors if the form is invalid. We’ll use the $dirty attribute to make sure the errors don’t show up if the user hasn’t touched the field:

 1 <div class="row">
 2 <div class="large-12 columns">
 3 <label>Your name</label>
 4 <input type="text"
 5 placeholder="Name"
 6 name="name"
 7 ng-model="signup.name"
 8 ng-minlength=3
 9 ng-maxlength=20 required />
10 <div class="error"
11 ng-show="signup_form.name.$dirty && signup_form.name.$invalid">
12 <small class="error"
13 ng-show="signup_form.name.$error.required">
14 Your name is required.
15 </small>
16 <small class="error"
17 ng-show="signup_form.name.$error.minlength">
18 Your name is required to be at least 3 characters
19 </small>
20 <small class="error"
21 ng-show="signup_form.name.$error.maxlength">
22 Your name cannot be longer than 20 characters
23 </small>
24 </div>
25 </div>
26 </div>

Breaking this down, we’re only going to show our errors if the form is invalid and changed, just as before. This time, we’ll look through each of the valiations and only show a particular DOM element if the particular validation property is invalid.

Let’s look at the next set of validations, the email validation:

 1 <div class="row">
 2 <div class="large-12 columns">
 3 <label>Your email</label>
 4 <input type="email"
 5 placeholder="Email"
 6 name="email"
 7 ng-model="signup.email"
 8 ng-minlength=3 ng-maxlength=20 required />
 9 <div class="error"
10 ng-show="signup_form.email.$dirty && signup_form.email.$invalid">
11 <small class="error"
12 ng-show="signup_form.email.$error.required">
13 Your email is required.
14 </small>
15 <small class="error"
16 ng-show="signup_form.email.$error.minlength">
17 Your email is required to be at least 3 characters
18 </small>
19 <small class="error"
20 ng-show="signup_form.email.$error.email">
21 That is not a valid email. Please input a valid email.
22 </small>
23 <small class="error"
24 ng-show="signup_form.email.$error.maxlength">
25 Your email cannot be longer than 20 characters
26 </small>
27 </div>
28 </div>
29 </div>

This time (with the entire form included), we’re looking at the email field. Note that we set the type of the input field to email and added a validation error on $error.email. This validation is based off the AngularJS email validation (and the HTML5 attribute).

Finally, let’s look at our last input field, the username:

 1 <div class="large-12 columns">
 2 <label>Username</label>
 3 <input type="text"
 4 placeholder="Desired username"
 5 name="username"
 6 ng-model="signup.username"
 7 ng-minlength=3
 8 ng-maxlength=20
 9 ensure-unique="username" required />
10 <div class="error"
11 ng-show="signup_form.username.$dirty && signup_form.username.$invalid">
12 <small class="error"
13 ng-show="signup_form.username.$error.required">
14 Please input a username
15 </small>
16 <small class="error"
17 ng-show="signup_form.username.$error.minlength">
18 Your username is required to be at least 3 characters
19 </small>
20 <small class="error"
21 ng-show="signup_form.username.$error.maxlength">
22 Your username cannot be longer than 20 characters
23 </small>
24 <small class="error"
25 ng-show="signup_form.username.$error.unique">
26 That username is taken, please try another
27 </small>
28 </div>
29 </div>

In our last field, we’re using all the same validations as previously except that we’ve added a custom validation. This custom validation is defined using an AngularJS directive:

 1 app.directive('ensureUnique', ['$http', function($http) {
 2 return {
 3 require: 'ngModel',
 4 link: function(scope, ele, attrs, c) {
 5 scope.$watch(attrs.ngModel, function() {
 6 $http({
 7 method: 'POST',
 8 url: '/api/check/' + attrs.ensureUnique,
 9 data: {'field': attrs.ensureUnique}
10 }).success(function(data, status, headers, cfg) {
11 c.$setValidity('unique', data.isUnique);
12 }).error(function(data, status, headers, cfg) {
13 c.$setValidity('unique', false);
14 });
15 });
16 }
17 }
18 }]);

When the form input is valid, this will make a POST request check to the server at /api/check/username to check if the username is available. Now, obviously since we’re only talking about front-end code here, we don’t have a back end to test this on, although it could easily be written.

Lastly, putting our button together, we can use the Angular directive ng-disabled to disable and re-enable the button depending on the validity of the form:

1 <button type="submit" ng-disabled="signup_form.$invalid" class="button radius">Su\
2 bmit</button>

 Play with the example so far

As we said above, the form itself will have $invalid and valid attributes given to us for free.

Although live validation is great, it can be abrasive to the user when they see errors pop up while they are typing, long before they have put in a valid value. You can be nicer to your users if you show the validations either only after they have submitted the form or after they have moved off of the input. Let’s look at both ways to do that.

Show Validations after Submit

To show validations only after the user has attempted to submit the form, you can capture a ‘submitted’ value on the scope and check for that scope to show the error.

For instance, let’s take a look at the first example and only show the errors when our user has submitted the form. On the ng-show directive on the form input, we can add a check to see if the form has been submitted (which we will implement shortly):

 1 <form name="signup_form" novalidate ng-submit="signupForm()" ng-controller="signu\
 2 pController">
 3 <fieldset>
 4 <legend>Signup</legend>
 5 <div class="row">
 6 <div class="large-12 columns">
 7 <label>Your name</label>
 8 <input type="text"
 9 placeholder="Name"
10 name="name"
11 ng-model="signup.name"
12 ng-minlength=3
13 ng-maxlength=20 required />
14 <div class="error"
15 ng-show="signup_form.name.$dirty && signup_form.name.$invalid && sign\
16 up_form.submitted">
17 <small class="error"
18 ng-show="signup_form.name.$error.required">
19 Your name is required.
20 </small>
21 <small class="error"
22 ng-show="signup_form.name.$error.minlength">
23 Your name is required to be at least 3 characters
24 </small>
25 <small class="error"
26 ng-show="signup_form.name.$error.maxlength">
27 Your name cannot be longer than 20 characters
28 </small>
29 </div>
30 </div>
31 </div>
32 <button type="submit" class="button radius">Submit</button>
33 </fieldset>
34 </form>

Now, the error div will only show up if the signup_form.submitted variable has been set to true. We can implement this behavior in the signupForm action, like so:

 1 	app.controller('signupCtrl', ['$scope', function($scope) {
 2 		$scope.submitted = false;
 3 		$scope.signupForm = function() {
 4 			if ($scope.signup_form.$valid) {
 5 				// Submit as normal
 6 			} else {
 7 				$scope.signup_form.submitted = true;
 8 			}
 9 		}
10 	}]);

If our users try to submit the form while there is an invalid element, we can now catch it and show them the appropriate errors.

 Try it out

Show Validations Only after Blur

If we want to retain the real-time nature of the error input, we can show our users the errors after they have blurred off of the input form (i.e., when they are no longer in a given field). To do so, we like to add a small directive that will attach a new variable to the form.

The directive we like to use is the ngFocus directive, and it looks like:

 1 app.directive('ngFocus', [function() {
 2 var FOCUS_CLASS = "ng-focused";
 3 return {
 4 restrict: 'A',
 5 require: 'ngModel',
 6 link: function(scope, element, attrs, ctrl) {
 7 ctrl.$focused = false;
 8 element.bind('focus', function(evt) {
 9 element.addClass(FOCUS_CLASS);
10 scope.$apply(function() {ctrl.$focused = true;});
11 }).bind('blur', function(evt) {
12 element.removeClass(FOCUS_CLASS);
13 scope.$apply(function() {ctrl.$focused = false;});
14 });
15 }
16 }
17 }]);

To implement the ngFocus directive, we can simply attach this directive to the input element, like so:

1 <input ng-class="{error: signup_form.name.$dirty && signup_form.name.$invalid}" t\
2 ype="text" placeholder="Name" name="name" ng-model="signup.name" ng-minlength=3 n\
3 g-maxlength=20 required ng-focus />

The ngFocus directive simply attaches an action to the blur and focus events on the form input, adds a class (ng-focused), and sets the form input field, $focused, as true. Then we can show our individual error messages depending on whether or not the form is focused. For instance:

1 <div class="error" ng-show="signup_form.name.$dirty && signup_form.name.$invalid \
2 && !signup_form.name.$focused">

 Play with the full example

It’s possible to check to see if the input field is empty, as well, by using the $isEmpty() method on the ngModel controller. The method will return true if the input is empty and false if it’s not.

Introduction to Directives

As web developers, we’re all familiar with HTML. Let’s take a moment to review and synchronize our terminology around this most fundamental of web technologies.

HTML Document

An HTML document is a plain text document that contains structure and may be styled through CSS or manipulated with JavaScript.

HTML Node

An HTML node is an element or chunk of text nested inside another element. All elements are also nodes; however, a text node is not an element.

HTML Element

An element comprises an opening tag and a closing tag.

HTML Tag

An HTML tag is responsible for marking the beginning and end of an element. A tag itself is declared using angle brackets.

An opening tag contains a name that becomes the name of the element. It can also contain attributes, which decorate the element.

Attributes

To provide additional information about an element, HTML elements can contain attributes. These attributes are always set in the opening tag. We can set them in a key-value pair, like key="value", or as only a key.

Let’s take a look at the <a> hyperlink tag, which is used to create a link from one page to another:

Some tags, like the hyperlink tag, have special attributes that act much like arguments to the tag. For example, the href attribute of a link tag enables the behavior of the link tag and also turns the text node in between the opening and closing tags blue by default on all browsers.

1
2 Click me to go to Google

The <a> tag defines a link between another page on our site or off our site, depending on the contents of the href attribute, which defines the link’s destination.

It is noticeably different from the following HTML element, the button:

1 <button href="http://google.com"
2 type="submit">Click me</button>

The link tag is, by default, underlined and blue, while the button, by default, looks like a clickable button in our browser.

The link tag knows that, when provided an href attribute that points to http://google.com, it should change the URL in the address bar and load Google’s home page when a user clicks on the link.

The button tag, on the other hand, is completely oblivious when provided an href attribute and does not perform the same behavior (the attribute is ignored).

Thus, changing the URL in the address bar and bringing you to a new page is part of a link’s pre-programmed behavior, but not part of a button’s pre-programmed behavior.

Finally, both tags perform the same behavior when provided a title attribute: They provide a tooltip to the user upon hover.

1 <a href="http://google.com"
2 title="click me">
3 Click me to go to Google
4
5 <button type="submit"
6 title="click me">Click me</button>

In summary, the web browser renders our HTML elements’ style and behavior; this capability is one of the fundamental strengths of the web.

Each vendor, whether it be Google or Microsoft, tries to adhere to the same HTML spec, therefore making programming for the web consistent across devices and operating systems.

 Past versions of Internet Explorer have not complied with the common HTML spec, so we need to perform some tricks to get older versions of IE to work. See the Internet Explorer chapter for more details.

Recently, new HTML tags have begun to emerge. These are a part of the HTML5 spec. For example, the video tag, which specifies a video, movie clip, or streaming video:

1 <video href="/goofy-video.mp4"></video>

These new HTML5 tags work on on newer browsers and are generally not supported by Internet Explorer version 8 and lower.

Directives: Custom HTML Elements and Attributes

Given what we know about HTML elements, directives are Angular’s method of creating new HTML elements that have their own custom functionality. For instance, we can create our own custom element that implements the video tag and works across all browsers:

1 <my-better-video my-href="/goofy-video.mp4">
2 Can even take text</my-better-video>

Notice that our custom element has custom open and closing tags, my-better-video, and a custom attribute, my-href.

To make our tag more usable, we could just override the browser-provided video tag, which means we could instead use:
{lang=”html”}
 <video my-href="/goofy-video.mp">
 Can still take children nodes
 </video>

As we can see, directives can be combined with other directives and attributes; this combination is called composition.

To effectively understand how to compose a system from smaller parts, we must first understand the primitive pieces. Facilitating that understanding will be the underlying goal of the next few chapters. Let’s get started.

Bootstrapped HTML

When the browser loads our HTML page along with Angular, we only one need snippet of code to boot our Angular application (we learned about it in the introductory chapter).

In our HTML we need to mark up the root of our app using the built in directive ng-app. This directive is meant to be used as an attribute; thus, we could stick it anywhere, but let’s choose the opening <html> tag, which is normative:

 	
 [image: information]
 	
 A built-in directive is one that ships out of the box with Angular. All built-in directives are prefixed with the ng namespace. In order to avoid namespace collisions, do not prefix the name of your own directives with ng.

1 <html ng-app="myApp">
2 <!-- $rootScope of our application -->
3 </html>

Inside of our <html> element, we can now use any of the built-in or custom directives we want. Furthermore, all of the directives we use within this root element will have access to $rootScope as a result of the prototypical inheritance in our JavaScript code if the method of the directive has access to scope. Access to scope, in this case, means that scope has been linked to the DOM, which is done late in the directive lifecycle.

Because the life cycle of a directive is sufficiently complex, it warrants its own section. In that section, we’ll also discuss which methods within a directive have access to scope and how scope is shared between one directive and the next. See the directives explained chapter for more information.

Our First Directive

The quickest way to get our feet wet is to just dive right in. Let’s go ahead and create a very basic custom directive.

Consider the following HTML element, which we’ll define in a moment:

1 <my-directive></my-directive>

Provided we’ve created an HTML document and included Angular as well as the ng-app directive in the DOM to mark the root of our app, when Angular compiles our HTML, it will invoke this directive.

 	
 [image: information]
 	
 We’ll learn more about the compile stage of the directive lifecycle in understanding compile.

 	
 [image: information]
 	
 Invoking a directive means to run the associated JavaScript that sits behind our directive, which we define using a directive definition.

The myDirective directive definition looks like:

1 angular.module('myApp', [])
2 .directive('myDirective', function() {
3 return {
4 restrict: 'E',
5 template: '
6 Click me to go to Google'
7 }
8 });

 	
 [image: information]
 	
 The above JavaScript is called a directive definition. We’ll see all the options for defining a directive in directive definition.

 [image: Simple directive in action]Simple directive in action

With the .directive() method, provided by the Angular module API, we can register new directives by providing a name as a string and function. The name of the directive should always be camelCased, and the function we provide should return an object.

 	
 [image: information]
 	
 Camel casing words is the practice of writing compound words or phrases without spaces such that each word, usually with the exception of the first word, begins with a capital letter, and the phrase becomes a single word. For instance: bumpy roads in camel case notation would be bumpyRoads.

 	
 [image: information]
 	
 In our case, we declare the directive in HTML using my-directive, the directive definition must be myDirective.

The object that we return from the .directive() method comprises methods and properties that we use to define and configure our directive.

In an attempt to master the simplest directive possible, we’ve only defined our directive with two options: restrict and template.

In directives explained, we’ll cover all of the available methods and properties we can use when defining our own directives, but for the moment, let’s check out the input HTML as compared to the output HTML by using Google Chrome and its developer tools.

First, open up your HTML document using Chrome. You’ll see a blue link that says “Click here”. Take a look at the source code by going to View > Developer > View Source. You should see the following picture:

 [image: Chrome Developer tool]Chrome Developer tool

Notice it’s no different from the source code you entered into your text editor; however, notice also that there is no link tag output to the screen yet. Clearly there’s supposed to be a link that says “Click here”. What’s going on?

To investigate, right click on the link, and in the drop-down menu provided by Chrome, left click on Inspect Element:

 [image: Inspecting element]Inspecting element

Doing so will open up the Chrome developer tools and provide you with the generated source, which Angular provides to Chrome after the page is loaded and after Angular has invoked our directive’s definition. Let’s take a look:

 [image: Unwrapping the directive]Unwrapping the directive

By default, Angular nests the HTML provided by our template string inside of our custom HTML tag, <my-directive>, in the generated source code.

Let’s add one more option to our directive definition: We can remove our custom element (<my-directive>) from the generated DOM completely and output only the link we’re providing to the template option. To do so, set the replace option to true:

1 angular.module('myApp', [])
2 .directive('myDirective', function() {
3 return {
4 restrict: 'E',
5 replace: true,
6 template: 'Click me to go to Google'
7 }
8 })

Look at the generated source again. We can see that we no longer have the original call to the directive, but only the source that we set as the template. This replace method replaces the custom element instead of wrapping it in our directive call.

 [image: Replacing existing element]Replacing existing element

From now on, we’ll refer to these custom elements we’ve created (using the .directive() method) as directives, because, in fact, we do not need to make a new custom element to declare our directive.

 	
 [image: information]
 	
 Declaring a directive is the act of placing a function within our HTML as an element, attribute, class, or comment.

The following are valid formats for declaring the directive we built above:

1 <my-directive></my-directive>
2 <div my-directive></div>
3 <div class="my-directive"></div>
4 <!-- directive: my-directive -->

In order to allow for Angular to invoke our directive, we’ll need to change the restrict option inside our directive definition. This option tells Angular which declaration format(s) to look for when compiling our HTML. We can specify one or many formats.

For example, in the directive we’re building, we can specify that we want our directive to be invoked if it is an element (E), an attribute (A), a class (C), or a comment (M):

1 angular.module('myApp', [])
2 .directive('myDirective', function() {
3 return {
4 restrict: 'EAC',
5 replace: true,
6 template: '
7 Click me to go to Google'
8 };
9 });

Regardless of how many ways we can declare a directive, we’ll stick to using an attribute (the way that is compliant across the most browsers):

1 <div my-directive></div>

And to be more explicit about our intentions with this directive, we’ll set the restrict option to the letter A (for attribute):

1 restrict: 'A'

When following this convention, however, we need to be aware of each browser’s built-in styles and make a decision about whether to wrap or replace our directive’s template.

A Note on Internet Explorer

If you’ve got a copy of Internet Explorer handy, try opening this live example on jsbin. You’ll notice that despite declaring your directive twice, only one link is showing up.

Technically, we can fix that by declaring new tags in the head of our document (see Angular with IE), but doing so can cause us headaches in the future if we neglect to be consistent.

Thus, a good rule of thumb to follow is to always declare our directive as an attribute (as we’ve done). It’ll save us some hassle later.

A noteworthy exception is when extending built-in HTML tags. For example, Angular overrides <a>, <form>, and <input>. Such cases don’t cause browser compatibility issues because these tags already have browser support.

Expressions

Given that a directive can (and usually should) be invoked as an attribute, we’re inclined to ask about the value passed to that attribute:

1 <h1 ng-init="greeting = 'Hello World'">
2 The greeting is: {{ greeting }}
3 </h1>

 Live Example

Notice that we’ve passed the expression greeting = 'Hello World' to the built-in directive ng-init. Inside the expression, we’ve set a property named greeting to the value Hello World. Then we’re evaluating the expression greeting inside brackets: {{ greeting }}.

In both cases, we’re evaluating a normal JavaScript expression on the current scope. Depending upon where the expression is placed, it can be the $rootScope, instantiated when Angular invokes ng-app during application boot or a child object such as a controller.

Declaring Our Directive with an Expression

Given that we now know that we can declare a directive with or without an expression, let’s revisit the valid ways of declaring an expression:

1 <my-directive="someExpression">
2 </my-directive>
3 <div my-directive="someExpression">
4 </div>
5 <div class="my-directive:someExpression">
6 </div>
7 <!-- directive: my-directive someExpression -->

A reasonable question at this point is within which environment the expression given to a directive runs. We’ll find our answer by familiarizing ourselves a bit with the elusive, but extremely important, concept of current scope, provided by the controller hierarchy of the surrounding DOM.

Current Scope Introduction

Let’s quickly familiarize ourselves with scope as provided by the DOM via the built-in directive ng-controller. This directive exists for the purpose of creating a new child scope in the DOM:

 1 <p>We can access: {{ rootProperty }}</p>
 2 <div ng-controller="ParentCtrl">
 3 <p>We can access: {{ rootProperty }}
 4 and {{ parentProperty }}</p>
 5 <div ng-controller="ChildCtrl">
 6 <p>
 7 We can access:
 8 {{ rootProperty }} and
 9 {{ parentProperty }} and
10 {{ childProperty }}
11 </p>
12 <p>{{ fullSentenceFromChild }}</p>
13 </div>
14 </div>

 1 angular.module('myApp', [])
 2 .run(function($rootScope) {
 3 // use .run to access $rootScope
 4 $rootScope.rootProperty = 'root scope';
 5 })
 6 .controller('ParentCtrl', function($scope) {
 7 // use .controller to access properties inside `ng-controller`
 8 // in the DOM omit $scope, it is inferred based on the current controller
 9 $scope.parentProperty = 'parent scope';
10 })
11 .controller('ChildCtrl', function($scope) {
12 $scope.childProperty = 'child scope';
13 // just like in the DOM, we can access any of the properties in the
14 // prototype chain directly from the current $scope
15 $scope.fullSentenceFromChild
16 = 'Same $scope: We can access: ' +
17 $scope.rootProperty + ' and ' +
18 $scope.parentProperty + ' and ' +
19 $scope.childProperty
20 });

 Live example, with colored scopes for learning purposes

More detailed information on ng-controller itself is available in the ng-controller section of the built in directives chapter.

Be aware that there are other built-in directives, like ng-include and ng-view, that also create a new child scope, meaning they behave similar to ng-controller when invoked. We can even create a new child scope when building a custom directive of our own. For the nuts and bolts on contextual scope provided by the surrounding DOM, see contextual scope explained.

Passing Data into a Directive

Let’s recall our directive definition:

1 angular.module('myApp', [])
2 .directive('myDirective', function() {
3 return {
4 restrict: 'A',
5 replace: true,
6 template: 'Click me to go to Google'
7 }
8 })

Notice that in our template we are hard coding the URL and the text of our link:

1 template: '
2 Click me to go to Google
3 '

With Angular, we aren’t limited to hard coding strings in the template of our directive.

We can provide a nicer experience for others using our directive if we specify the URL and link text without messing with the internal guts of the directive. Our goal here is to pay attention to the public interface of our directive, just as we would in any programming language.

In essence, we’d like to turn the above template string into one that takes two variables: one for the URL and one for the link’s text:

1 template: '<a
2 href="{{myUrl}}">{{myLinkText}}'

Looking at our main HTML document, we can declare our directive with attributes that will become the properties myUrl and mylinkText, set on the inner scope of our directive:

1 <div my-directive
2 my-url="http://google.com"
3 my-link-text="Click me to go to Google">
4 </div>

Reload the page and notice that the div where we declared our directive has been replaced by its template; however, the link’s href is empty, and there’s no text inside the brackets.

 [image: Updating template]Updating template

To set properties on the inner scope of our directive, we have a few options. The simplest option is to simply use the existing scope currently provided by the controller (ng-controller) inside of which we’re nested.

While simple, however, sharing state leaves us vulnerable. If that controller is removed or if a property with the name myUrl is later defined on its scope, we’ll be forced to change our code, which is costly and frustrating.

To overcome this common issue, Angular provides the ability to create a new child scope or create an isolate scope.

 In contrast to inherited scope (child scope), discussed earlier (in current scope introduction), an isolate scope is completely separate from the current scope of the DOM. In order to set properties on this fresh object, we’ll need explicitly pass in data via attributes, similar to the way we pass arguments into a method in JavaScript or Ruby.

When we set the scope of our directive to a clean object with its own properties,

Built-In Directives

Built-In Directives

Angular provides a suite of built-in directives. Some directives override built-in HTML elements, such the the <form> and <a> tags. When we use tags like these in our HTML, it may not be immediately obvious that we’re, in fact, using a directive. For example, the <form> tag is augmented with a great deal of functionality under the hood, such as validation behavior that we normally don’t get with a standard HTML form.

Other built-in directives are clearly visible via their ng- namespace prefix. For example, ng-href, which we’ll cover below, prevents a link from becoming active until the expression provided to ng-href="someExpression" has been evaluated and returns a value.

Lastly, some built-in directives do not have an HTML counterpart, such as the ng-controller directive, which can be used as an attribute on any tag, but is most often found on an element that has many children that should share the same scope.

Note that all directives prefixed with the ng namespace are part of the built-in library of directives that ship with Angular. For this reason, never prefix directives you make with this namespace.

Basic ng Attribute Directives

Our first set of directives has similarly named standard HTML tags and is easy to remember because we simply add the ng prefix to each:

	ng-href

 	ng-src

 	ng-disabled

 	ng-checked

 	ng-readonly

 	ng-selected

 	ng-class

 	ng-style

Boolean Attributes

The following Angular directives help make working with HTML boolean attributes easier.

As defined by the HTML specification, a boolean attribute is an attribute that represents a true/false value. When the attribute is present, then the attribute’s value is assumed to be true (regardless of its actual value). If absent, the attribute is assumed to be false.

When working with dynamic data via data bindings in Angular, we cannot simply set the value of the attribute to true or false, because by definition of the spec, the attribute is false if it is not present. Thus Angular provides an ng-prefixed version of these attributes that will evaluate the expression provided to insert or remove the corresponding boolean attribute on the decorated element.

ng-disabled

Use ng-disabled to bind the disabled attribute to form input fields:

	<input> (text, checkbox, radio, number, url, email, submit)

 	<textarea>

 	<select>

 	<button>

When writing normal HTML input fields, the presence of the disabled attribute on an input field makes the field disabled. To bind the presence (or not) of this attribute, use ng-disabled.

For example, let’s disable the following button until the user enters text into the text field:

1 <input type="text" ng-model="someProperty" placeholder="Type to Enable">
2 <button ng-model="button" ng-disabled="!someProperty">A Button</button>

In the next example, we’ll disable the text field for five seconds until the isDisabled property becomes true inside the $timeout:

1 <textarea ng-disabled="isDisabled">Wait 5 seconds</textarea>

1 angular.module('myApp', [])
2 .run(function($rootScope, $timeout) {
3 $rootScope.isDisabled = true;
4 $timeout(function() {
5 $rootScope.isDisabled = false;
6 }, 5000);
7 });

 Both Live Examples

ng-readonly

Similar to the other boolean attributes, the HTML spec only looks at the presence of the attribute readonly, not its value.

To allow Angular to bind to an expression that returns a truthy or falsy value and, in turn, output (or not) the readonly attribute, use ng-readonly:

1 Type here to make sibling readonly: <input type="text" ng-model="someProperty"><b\
2 r/>
3 <input type="text" ng-readonly="someProperty" value="Some text here"/>

 Live Example

ng-checked

The standard checked HTML attribute is a boolean attribute, and as such, is not required to take a value. In order for Angular to bind the presence of the checked attribute to the value of an expression, use ng-checked.

In the following example, we set the value of someProperty to true using the ng-init directive. Binding the value of someProperty to ng-checked then tells Angular to output the standard HTML checked attribute, which will check the box by default.

1 <label>someProperty = {{someProperty}}</label>
2 <input type="checkbox"
3 ng-checked="someProperty"
4 ng-init="someProperty = true"
5 ng-model="someProperty">

In this example, we do the opposite:

1 <label>anotherProperty = {{anotherProperty}}</label>
2 <input type="checkbox"
3 ng-checked="anotherProperty"
4 ng-init="anotherProperty = false"
5 ng-model="anotherProperty">

Note that we also used ng-model to bind the value of someProperty and anotherProperty inside their respective label tags, for the sake of demonstration.

 Live Example

ng-selected

Use ng-selected to bind the presence (or not) of the selected attribute to the option tag:

1 <label>Select Two Fish:</label>
2 <input type="checkbox"
3 ng-model="isTwoFish">

4 <select>
5 <option>One Fish</option>
6 <option ng-selected="isTwoFish">Two Fish</option>
7 </select>

 Live Example

Boolean-like Attributes

While not technically HTML, boolean attributes like the ng-href and ng-src act in a similar manner and are therefore defined alongside the ng boolean attributes within the Angular source code and presented here.

Both ng-href and ng-src are so likely to help improve refactoring and prevent errors when changing code later in a project that it is recommended to use them in place of href and src, respectively.

 ng-href

When dynamically creating a URL from a property on the current scope, always use ng-href instead of href.

The issue here is that the user is able to click a link built with href before interpolation takes place, which would bring them to the wrong page (often a 404).

On the other hand, by using ng-href, Angular waits for the interpolation to take place (in our example, after two seconds), and then activates the link’s behavior:

1 <!-- Always use ng-href when href includes an {{ expression }} -->
2 <a ng-href="{{myHref}}">I'm feeling lucky, when I load
3
4 <!-- href may not load before user clicks -->
5 I'm feeling 404

Delay the interpolation of the string value for two seconds to see this behavior in action:

1 angular.module('myApp', [])
2 .run(function($rootScope, $timeout) {
3 $timeout(function() {
4 $rootScope.myHref = 'http://google.com';
5 }, 2000);
6 });

 Live Example

ng-src

Angular will tell the browser to NOT fetch the image via the given URL until all expressions provided to ng-src have been interpolated:

1 <h1>Wrong Way</h1>
2
3
4 <h1>Right way</h1>
5

1 angular.module('myApp', [])
2 .run(function($rootScope, $timeout) {
3 $timeout(function() {
4 $rootScope.imgSrc = 'https://www.google.com/images/srpr/logo11w.png';
5 }, 2000);
6 });

 Live Example

When viewing the live example, check out the network panel within the Chrome developer tools. Notice that one request is red, indicating that there was an error. This error occurs when we use src instead of ng-src under ‘Wrong Way’.

Directives with Child Scope

The following directives create a child scope that prototypically inherits from its parent. This inheritance provides a layer of separation meant for storing methods and model objects that work together to achieve a common goal.

ng-app and ng-controller are special directives, in that they modify the scope of directives nested inside of them.

ng-app creates the $rootScope of an Angular application, while ng-controller creates a child scope that prototypically inherits from either $rootScope or another ng-controller’s $scope.

ng-app

Placing ng-app on any DOM element marks that element as the beginning of the $rootScope.

$rootScope is the beginning of the scope chain, and all directives nested under the ng-app in your HTML inherit from it.

In your JavaScript code you can access the $rootScope via the run method:

1 <html ng-app="myApp">
2 <body>
3 {{ someProperty }}
4 <button ng-click="someAction()"></button>
5 </body>
6 </html>

1 angular.module('myApp', [])
2 .run(function($rootScope) {
3 $rootScope.someProperty = 'hello computer';
4 $rootScope.someAction = function() {
5 $rootScope.someProperty = 'hello human';
6 };
7 });

 Live Example

While useful for the purpose of demonstration, using $rootScope on a regular basis is like using global scope – don’t do it.

We can only use ng-app once per document. If we want to place multiple apps in a page, we’ll need to manually bootstrap our applications. We will talk more about manually bootstrapping apps in the under the hood chapter.

ng-controller

Instead of defining actions and models on $rootScope, use ng-controller, which is a built-in directive whose purpose is to provide a child scopes for the directives that are nested inside. We’ll use this directive to place a controller on a DOM element.

ng-controller takes a single argument:

expression (required expression)

The expression is an Angular expression

A child $scope is simply a JavaScript object that prototypically inherits methods and properties from its parent $scope(s), including the application’s $rootScope.

Directives that are nested within an ng-controller have access to this new child $scope, but be mindful that the scoping rules for each directive do apply.

Recall that the $scope object within a controller should be responsible for the actions and models shared by directives in the DOM.

 	
 [image: tip]
 	
 An action refers to a traditional JavaScript method on the $scope object.

 	
 [image: tip]
 	
 A model refers to a traditional JavaScript object {} where transient state should be stored. Persistent state should be bound to a service, which is then responsible for dealing with persisting that model.

 	
 [image: warning]
 	
 It’s important to not to set a value object (string, boolean, or number) directly on the $scope of a controller for a number of technological and architectural reasons. Data in the DOM should always use a . (dot). Following this rule will keep you out of unexpected trouble.

 	
 [image: discussion]
 	
 Controllers should be as simple as possible. Although we can use the controller to prototype our functionality, it’s a good idea to refactor the logic out using services and directives. See application architecture for more information.

Using a controller, we can modify our previous example by placing our data and action on a child scope:

1 <div ng-controller="SomeCtrl">
2 {{ someModel.someProperty }}
3 <button ng-click="someAction()">Communicate</button>
4 </div>

 1 angular.module('myApp', [])
 2 .controller('SomeCtrl', function($scope) {
 3 // create a model
 4 $scope.someModel = {
 5 // with a property
 6 someProperty: 'hello computer'
 7 }
 8 // set actions on $scope itself
 9 $scope.someAction = function() {
10 $scope.someModel.someProperty = 'hello human';
11 };
12 });

 Live Example

In this iteration of our example, notice two differences from the previous:

First, we’re using a child scope of $rootScope, which provides a clean object with which we can work. Using this scope means that actions and models used on the scope will not be available everywhere in the app; they’ll only be available to directives within this scope or child scopes.

Secondly, notice that we’re explicit about our data model, which, as we mentioned, is extremely important. To see why it is important, let’s look at another iteration of this example that nests a second controller inside of our existing controller and doesn’t set properties on a model object:

1 <div ng-controller="SomeCtrl">
2 {{ someBareValue }}
3 <button ng-click="someAction()">Communicate to child</button>
4 <div ng-controller="ChildCtrl">
5 {{ someBareValue }}
6 <button ng-click="childAction()">Communicate to parent</button>
7 </div>
8 </div>

 1 angular.module('myApp', [])
 2 .controller('SomeCtrl', function($scope) {
 3 // anti-pattern, bare value
 4 $scope.someBareValue = 'hello computer';
 5 // set actions on $scope itself, this is okay
 6 $scope.someAction = function() {
 7 // sets {{ someBareValue }} inside SomeCtrl and ChildCtrl
 8 $scope.someBareValue = 'hello human, from parent';
 9 };
10 })
11 .controller('ChildCtrl', function($scope) {
12 $scope.childAction = function() {
13 // sets {{ someBareValue }} inside ChildCtrl
14 $scope.someBareValue = 'hello human, from child';
15 };
16 });

 Live Example

Because of the way prototypal inheritance works with value objects in JavaScript, changing someBareValue via an action in the parent does change it in the child, but not vice versa.

To see this problem in action, try clicking on the child button first and then the parent button. Doing so makes it clear that the child controller has copy, not a reference to someBareValue.

 	
 [image: information]
 	
 JavaScript objects are either copy by value or copy by reference. String, Number, and Boolean are copy by value. Array, Object, and Function are copy by reference.

Had we set our string as a property on a model object, it would have been shared via reference, which means changing the property on the child will change it on the parent. The following example shows the correct way:

1 <div ng-controller="SomeCtrl">
2 {{ someModel.someValue }}
3 <button ng-click="someAction()">Communicate to child</button>
4 <div ng-controller="ChildCtrl">
5 {{ someModel.someValue }}
6 <button ng-click="childAction()">Communicate to parent</button>
7 </div>
8 </div>

 1 angular.module('myApp', [])
 2 .controller('SomeCtrl', function($scope) {
 3 // best practice, always use a model
 4 $scope.someModel = {
 5 someValue: 'hello computer'
 6 }
 7 $scope.someAction = function() {
 8 $scope.someModel.someValue = 'hello human, from parent';
 9 };
10 })
11 .controller('ChildCtrl', function($scope) {
12 $scope.childAction = function() {
13 $scope.someModel.someValue = 'hello human, from child';
14 };
15 });

 Live Example

Try clicking on either button. The value always remains in sync.

Note that while this behavior manifests itself most noticeably when using ng-controller, it will also rear its ugly head when using any directive that creates a new child scope by setting the scope property inside its directive definition to true. The following built-in directives do exactly that:

	ng-include

 	ng-switch

 	ng-repeat

 	ng-view

 	ng-controller

 	ng-if

 	ng-repeat

ng-include

Use ng-include to fetch, compile, and include an external HTML fragment into your current application. The URL of the template is restricted to the same domain and protocol as the application document unless whitelisted or wrapped as trusted values. Furthermore, you’ll need to account for Cross-Origin Resource Sharing and Same Origin Policy to ensure your template loads on all browsers. For example, it won’t work for cross-domain requests on all browsers and for file:// access on some browsers.

 	
 [image: tip]
 	
 While developing, you may run Chrome from the command line with chrome --allow-file-access-from-files to disable the CORS error. Only go this route in an emergency (e.g., your boss is standing behind you and everything just broke).

Use the onload attribute within the same element to run an expression when the template is loaded.

Keep in mind that when using ng-include, Angular automatically creates a new child scope. If you want to use a particular scope, for instance the scope of ControllerA, you must invoke the ng-controller="ControllerA" directive on the same DOM element itself; it will not be inherited from the surrounding scope like usual because a new scope is created when the template loads.

Let’s look at an example:

1 <div ng-include="/myTemplateName.html"
2 ng-controller="MyController"
3 ng-init="name = 'World'">
4 Hello {{ name }}
5 </div>

ng-switch

We use this directive in conjunction with ng-switch-when and on="propertyName" to switch which directives render in our view when the given propertyName changes. In the following example, when person.name is ‘Ari’ the div below the text field will be shown and the person will have won:

1 <input type="text" ng-model="person.name" />
2 <div ng-switch on="person.name"></div>
3 <p ng-switch-default>And the winner is</p>
4 <h1 ng-switch-when="Ari">{{ person.name }}</h1>

Note that we used ng-switch-default to output the name of the person until the switch occured.

 Live Example

ng-view

The ng-view directive sets the view location in the HTML where the router will manage and place the view elements for different routes. We will cover this in depth in the routing chapter.

See the routing chapter for more information.

ng-if {ng_if}

Use ng-if to completely remove or recreate an element in the DOM based on an expression. If the expression assigned to ng-if evaluates to a false value, then the element is removed from the DOM, otherwise a clone of the element is reinserted into the DOM.

ng-if differs from ng-show and ng-hide in that it actually removes and recreates DOM nodes, rather than just showing and hiding them via CSS.

When an element is removed from the DOM using ng-if, its associated scope is destroyed. Furthermore, when it comes back into being, a new scope is created and inherits from its parent scope using prototypal inheritance.

It’s also important be aware that ngIf recreates elements using their compiled state. If code inside of ng-if is loaded, is manipulated using jQuery (for example, using .addClass), then is removed because the expression inside the ng-if becomes false, then when the expression later becomes true again, the DOM element and its children will be reinserted into the DOM in their original state, not the state they had when they left the DOM. That means that whatever class was added using jQuery’s .addClass will no longer be present.

1 <div ng-if="2 + 2 === 5">
2 Won't see this DOM node, not even in the source code
3 </div>
4
5 <div ng-if="2 + 2 === 4">
6 Hi, I do exist
7 </div>

 Live Example

ng-repeat

Use ng-repeat to iterate over a collection and instantiate a new template for each item in the collection. Each item in the collection is given its own template and therefore its own scope. Furthermore, there are a number of special properties exposed on the local scope of each template instance:

	$index: iterator offset of the repeated element (0..length-1)

 	$first: true if the repeated element is first in the iterator

 	$middle: true if the repeated element is between the first and last in the iterator

 	$last: true if the repeated element is last in the iterator

 	$even: true if the iterator position $index is even (otherwise false)

 	$odd: true if the iterator position $index is odd (otherwise false)

We’ll use $odd and $even in the following example to make a repeating list where even items are red and odd item are blue. Remember that in JavaScript arrays are indexed starting at 0; thus, we use !$even and !$odd to flip the boolean value given by $even and $odd.

1 <ul ng-controller="PeopleController">
2 <li ng-repeat="person in people" ng-class="{even: !$even, odd: !$odd}">
3 {{person.name}} lives in {{person.city}}
4
5

1 .odd {
2 background-color: blue;
3 }
4 .even {
5 background-color: red;
6 }

1 angular.module('myApp', [])
2 .controller('PeopleController', function($scope) {
3 $scope.people = [
4 {name: "Ari", city: "San Francisco"},
5 {name: "Erik", city: "Seattle"}
6];
7 })

 Live Example

ng-init

Use ng-init to set up state inside the scope of a directive when that directive is invoked.

The most common use case for using ng-init is when creating small examples for educational purposes, like the examples in this chapter.

For anything substantial, create a controller and set up state within a model object.

1 <div ng-init="greeting='Hello'; person='World'">
2 {{greeting}} {{person}}
3 </div>

 Live Example

{{ }}

1 <div>{{ name }}</div>

The {{ }} syntax is a templating syntax that’s built into Angular. It creates a binding from the containing $scope to the view. Any time that the $scope changes, the view will update automatically on account of this binding.

Although it doesn’t look like a normal directive, it is, in fact, a shortcut for using ng-bind without needing to create an element; therefore, it is most commonly used with inline text.

Be aware that using {{ }} within the visible viewport of the screen while the page loads may cause a flash of unrendered content. To prevent this issue, use ng-bind instead.

1 <body ng-init="greeting = 'Hello World'">
2 {{ greeting }}
3 </body>

 Live Example

ng-bind

Although we can use the {{ }} template syntax within our views (Angular interpolates these), we can mimic this behavior with the ng-bind directive.

1 <body ng-init="greeting = 'Hello World'">
2 <p ng-bind="greeting"></p>
3 </body>

 Live Example

When we use the {{ }} syntax, our HTML document loads the element and does not render it immediately, causing a “flash of unrendered content” (FOUC, for short). We can prevent this FOUC from being exposed by using ng-bind and binding our content to the element. The content will then render as the child text node of the element on which ng-bind is declared.

ng-cloak

An alternative to using to using ng-bind to prevent a flash of unrendered content is to use ng-cloak on the element containing {{ }}:

1 <body ng-init="greeting = 'Hello World'">
2 <p ng-cloak>{{ greeting }}</p>
3 </body>

 Live Example

ng-bind-template

Similar to the ng-bind directive, we can use the ng-bind-template directive if we want to bind multiple expressions to the view.

1 <div
2 ng-bind-template="{{ message }} {{ name }}">
3 </div>

ng-model

The ng-model directive binds an input, select, textarea, or custom form control to a property on the surrounding scope. It handles and provides validation, sets related CSS classes on the element (ng-valid, ng-invalid, etc.), and registers the the control with its parent form. It binds to the property given by evaluating the expression on the current scope. If the property doesn’t already exist on this scope, it will be created implicitly and added to the scope.

We should always use ngModel with a model property on the $scope, not as a raw property on the scope itself. Setting ng-model as a property of the scope will help us avoid overloading properties on the same scope or the inherited scope.

For example:

1 <input type="text"
2 ng-model="modelName.someProperty" />

The code above is the correct way to think about and practically use ngModel properly.

The bottom line is to always have a . in your ng-models. For in-depth discussion and an example on this topic, see the ng-controller section earlier in this chapter.

ng-show/ng-hide

ng-show and ng-hide show or hide the given HTML element based on the expression provided to the attribute. When the expression provided to the ng-show attribute is false the element is hidden. Similarly, when the expression given to ng-hide is true, the element is hidden.

The element is shown or hidden by removing the ng-hide CSS class from, or adding it to, the element. The .ng-hide CSS class is predefined in AngularJS and sets the display style to none (using an !important flag).

 1 <div ng-show="2 + 2 == 5">
 2 2 + 2 isn't 5, don't show
 3 </div>
 4 <div ng-show="2 + 2 == 4">
 5 2 + 2 is 4, do show
 6 </div>
 7 <div ng-hide="2 + 2 == 5">
 8 2 + 2 isn't 5, don't hide
 9 </div>
10 <div ng-hide="2 + 2 == 4">
11 2 + 2 isn't 5, do hide
12 </div>

 Live Example

ng-change

This directive evaluates the given expression when the input changes. As we’re dealing with input, we must use this directive in conjunction with ngModel.

1 <div ng-controller="EquationController">
2 <input type="text"
3 ng-model="equation.x"
4 ng-change="change()" />
5 <code>{{ equation.output }}</code>
6 </div>

1 angular.module('myApp', [])
2 .controller('EquationController', function($scope) {
3 $scope.equation = {};
4 $scope.change = function() {
5 $scope.equation.output
6 = Number($scope.equation.x) + 2;
7 };
8 });

 Live Example

In the above example, we run the change() function whenever equation.x is changed by entering text into the text field.

ng-form

We use ng-form when we need to nest a form within another form. The normal HTML <form> tag doesn’t allow us to nest our forms, but ng-form will.

That means that the outer form is valid when all of the child forms are valid, as well. This fact is especially useful when dynamically generating forms using ng-repeat.

Because we cannot dynamically generate the name attribute of input elements using interpolation, we need to wrap each set of repeated inputs in an ng-form directive and nest these in an outer form element.

The following CSS classes are set, depending on the validity of the form:

	ng-valid when form is valid

 	ng-invalid when form is invalid

 	ng-pristine when form is pristine

 	ng-dirty when form is dirty

Angular will not submit the form to the server unless the form has an action attribute specified.

To specify which JavaScript method should be called when a form is submitted, use one of the following two directives:

	ng-submit on the form element

 	ng-click on the first button or input field of type submit (input[type=submit])

To prevent double execution of the handler, use only the ng-submit or ng-click directives.

In the following examples, we want to dynamically generate a form based on a JSON response from the server. We’ll use ng-repeat to loop over the fields we get back from the server. Because we cannot dynamically generate the name attribute, and because we need the name attribute to perform validation, we’ll loop over the fields and create a new form for each one.

Because Angular forms that use ng-form instead of form can be nested, and because the parent form is not valid until its child forms are valid, we can both dynamically generate a form with child forms and use validation. Yes, we can have our cake and eat it too.

Let’s first view the JSON we’re hard coding, as though it came from the server:

 1 angular.module('myApp', [])
 2 .controller('FormController', function($scope) {
 3 $scope.fields = [
 4 {placeholder: 'Username', isRequired: true},
 5 {placeholder: 'Password', isRequired: true},
 6 {placeholder: 'Email (optional)', isRequired: false}
 7];
 8
 9 $scope.submitForm = function() {
10 alert("it works!");
11 };
12 });

Now, let’s take a look at using that data to generate a dynamic form with validation:

 1 <form name="signup_form"
 2 ng-controller="FormController"
 3 ng-submit="submitForm()" novalidate>
 4 <div ng-repeat="field in fields"
 5 ng-form="signup_form_input">
 6 <input type="text"
 7 name="dynamic_input"
 8 ng-required="field.isRequired"
 9 ng-model="field.name"
10 placeholder="{{field.placeholder}}" />
11 <div
12 ng-show="signup_form_input.dynamic_input.$dirty &&
13 signup_form_input.dynamic_input.$invalid">
14 <span class="error"
15 ng-show="signup_form_input.dynamic_input.$error.required">
16 The field is required.
17
18 </div>
19 </div>
20 <button type="submit"
21 ng-disabled="signup_form.$invalid">
22 Submit All
23 </button>
24 </form>

1 input.ng-invalid {
2 border: 1px solid red;
3 }
4
5 input.ng-valid {
6 border: 1px solid green;
7 }

 Live Example

ng-click

Use ng-click to specify a method or expression to run on the containing scope when the element is clicked.

 1 <div ng-controller="CounterController">
 2 <button ng-click="count = count + 1"
 3 ng-init="count=0">
 4 Increment
 5 </button>
 6 count: {{count}}
 7 <button ng-click="decrement()">
 8 Decrement
 9 </button>
10 <div>

1 angular.module('myApp', [])
2 .controller('CounterController', function($scope) {
3 $scope.decrement = function() {
4 $scope.count = $scope.count - 1;
5 };
6 })

 Live Example

ng-select

Use the ng-select directive to bind data to an HTML <select> element. This directive can be used in conjunction with ng-model and ng-options to provide sophisticated and highly performant dynamic forms.

ng-options takes a comprehension expression for its attribute value, which is just a fancy way of saying it can take an array or an object and loop over its contents to provide the options available when using the select tag. It comes in one of the following forms:

	for array data sources:
 	label for value in array

 	select as label for value in array

 	label group by group for value in array

 	select as label group by group for value in array track by trackexpr

 	for object data sources:
 	label for (key, value) in object

 	select as label for (key, value) in object

 	label group by group for (key, value) in object

 	select as label group by group for (key, value) in object

Let’s look at an example of using ng-select:

1 <div ng-controller="CityController">
2 <select ng-model="city"
3 ng-options="city.name for city in cities">
4 <option value="">Choose City</option>
5 </select>
6 Best City: {{ city.name }}
7 </div>

 1 angular.module('myApp', [])
 2 .controller('CityController', function($scope) {
 3 $scope.cities = [
 4 {name: 'Seattle'},
 5 {name: 'San Francisco'},
 6 {name: 'Chicago'},
 7 {name: 'New York'},
 8 {name: 'Boston'}
 9];
10 });

 Live Example

ng-submit

We use ng-submit to bind an expression to an onsubmit event. This directive also prevents the default action (sending the request and reloading the page), but only if the form does not contain an action attribute.

 1 <form ng-submit="submit()"
 2 ng-controller="FormController">
 3 Enter text and hit enter:
 4 <input type="text"
 5 ng-model="person.name"
 6 name="person.name" />
 7 <input type="submit"
 8 name="person.name"
 9 value="Submit" />
10 <code>people={{people}}</code>
11 <ul ng-repeat="(index, object) in people">
12 {{ object.name }}
13
14 </form>

 1 angular.module('myApp', [])
 2 .controller('FormController', function($scope) {
 3
 4 $scope.person = {
 5 name: null
 6 };
 7
 8 $scope.people = [];
 9
10 $scope.submit = function() {
11 if ($scope.person.name) {
12 $scope.people.push({name: $scope.person.name});
13 $scope.person.name = '';
14 }
15 };
16 });

 Live Example

ng-class

Use ng-class to dynamically set the class of an element by binding an expression that represents all classes to be added. Duplicate classes will not be added. When the expression changes, the previously added classes are removed and only then are the new classes added.

Let’s use ng-class to add the class .red to a div whenever a random number drawn is above 5.

 1 <div ng-controller="LotteryController">
 2 <div ng-class="{red: x > 5}"
 3 ng-if="x > 5">
 4 You won!
 5 </div>
 6 <button ng-click="x = generateNumber()"
 7 ng-init="x = 0">
 8 Draw Number
 9 </button>
10 <p>Number is: {{ x }}</p>
11 </div>

1 .red {
2 background-color: red;
3 }

1 angular.module('myApp', [])
2 .controller('LotteryController', function($scope) {
3 $scope.generateNumber = function() {
4 return Math.floor((Math.random()*10)+1);
5 }
6 })

 Live Example

ng-attr-[suffix]

When Angular compiles the DOM, it looks for expressions within {{ some expression }} brackets. These expressions are automatically registered with the $watch service and update as part of the normal $digest cycle:

1 <-- updated when `someExpression` on the $scope is updated -->
2 <h1>Hello {{ someExpression }}</h1>

Sometimes, however, web browsers are picky about what attributes they allow. SVG is one such instance:

1 <svg>
2 <circle cx="{{cx}}"></circle>
3 </svg>

Running the code above will throw an error, telling us we have an invalid attribute. To fix this problem, we can use ng-attr-cx. Notice that the cx is named after the attribute we would like to define. Within the string, we can write an expression with {{}} and achieve the result we were looking for above.

1 <svg>
2 <circle ng-attr-cx="{{cx}}"><circle>
3 </svg>

Directives Explained

Directives Explained

The goal of this chapter is to explicitly lay out all of the options and capabilities that directives have to offer when building mature client-side applications.

Directive Definition

The simplest way to think about directives is that they are simply a function that we run on a particular DOM element. The function is expected to provide extra functionality on the element.

For instance, the ng-click directive gives an element the ability to listen for the click event and run an Angular expression when it receives the event. Directives are what makes the Angular framework so powerful, and, as we’ve seen, we can also create them.

A directive is defined using the .directive() method, one of the many methods available on our application’s Angular module.

1 angular.module('myDirective', function($timeout, UserDefinedService) {
2 // directive definition goes here
3 })

The directive() method takes two arguments:

name (string)

The name of the directive as a string that we’ll refer to inside of our views.

factory_function (function)

The factory function returns an object that defines how the directive behaves. It is expected to return an object providing options that tell the $compile service how the directive should behave when it is invoked in the DOM.

1 angular.application('myApp', [])
2 .directive('myDirective', function() {
3 // A directive definition object
4 return {
5 // directive definition is defined via options
6 // which we'll override here
7 };
8 });

We can also return a function instead of an object to handle this directive definition, but it is best practice to return an object as we’ve done above. When a function is returned, it is often referred to as the postLink function, which allows us to define the link function for the directive. Returning a function instead of an object limits us to a narrow ability to customize our directive and, thus, is good for only simple directives.

When Angular bootstraps our app, it will register the returned object by the name provided as a string via the first argument. The Angular compiler parses the DOM of our main HTML document looking for elements, attributes, comments, or class names using that name when looking for these directives. When it finds one that it knows about, it uses the directive definition to place the DOM element on the page.

1 <div my-directive></div>

 	
 [image: information]
 	
 To avoid collision with future HTML standards it’s best practice to prefix a custom directive with a custom namespace. Angular itself has chosen the ng- prefix, so use something other than that. In the examples that follow, we’ll use the my- prefix (e.g., my-directive).

The factory function we define for a directive is only invoked once, when the compiler matches the directive the first time. Just like the .controller function, we invoke a directive’s factory function using $injector.invoke.

When Angular encounters the named directive in the DOM, it will invoke the directive definition we’ve registered, using the name to look up the object we’ve registered. At this point, the directive lifecycle begins, starting with the compile method and ending with the link method. We’ll dive into the specifics of this process later in this chapter.

Let’s look at all the available options we can provide to a directive definition.

 	
 [image: information]
 	
 A JavaScript object is made up of keys and values. When the value for a given key is set to a string, boolean, number, array, or object, we call the key a property. When we set the key to a function, we call it a method.

The possible options are shown below. The value of each key provides the signature of either the method or the type we can set the property to:

 1 angular.module('myApp', [])
 2 .directive('myDirective', function() {
 3 return {
 4 restrict: String,
 5 priority: Number,
 6 terminal: Boolean,
 7 template: String or Template Function: function(tElement, tAttrs) (...},
 8 templateUrl: String,
 9 replace: Boolean or String,
10 scope: Boolean or Object,
11 transclude: Boolean,
12 controller: String or function($scope, $element, $attrs, $transclude, otherIn\
13 jectables) { ... },
14 controllerAs: String,
15 require: String,
16 link: function(scope, iElement, iAttrs) { ... },
17 compile: return an Object OR function(tElement, tAttrs, transclude) {
18 return {
19 pre: function(scope, iElement, iAttrs, controller) { ... },
20 post: function(scope, iElement, iAttrs, controller) { ... }
21 }
22 // or
23 return function postLink(...) { ... }
24 }
25 };
26 });

Restrict (string)

restrict is an optional argument. It is responsible for telling Angular in which format our directive will be declared in the DOM. By default, Angular expects that we will declare a custom directive as an attribute, meaning the restrict option is set to A.

The available options are as follows:

	E (an element)
{lang=”html”}
 <my-directive />

 	A (an attribute, default)
{lang=”html”}
 <div my-directive="expression"></div>

 	C (a class)
{lang=”html”}
 <div class="my-directive: expression;"></div>

 	M (a comment)
{lang=”html”}
 <– directive: my-directive expression –>

These options can be used alone or in combination:

1 angular.module('myDirective', function() {
2 return {
3 restrict: 'EA' // either an element or an attribute
4 };
5 });

In this case, we can declare the directive as an attribute or an element:

1 <-- as an attribute -->
2 <div my-directive></div>
3 <-- or as an element -->
4 <my-directive></my-directive>

Attributes are the default and most common form of directive because they will work across all browsers, including older versions of Internet Explorer, without having to register a new tag in the head of the document. See the chapter on Internet Explorer for more information on this topic.

 	
 [image: information]
 	
 Avoid using comments to declare a directive. This format was originally introduced as a way to create directives that span multiple elements. This approach was especially useful, for example, when using ng-repeat inside a <table> element; however, as of Angular 1.2, ng-repeat provides ng-repeat-start and ng-repeat-end as a better solution to this problem, minimizing the need for the comment form of a directive even more so. If you are curious, however, take a look at the Chrome developer tools elements tab when using ng-repeat to see comments being used under the hood.

Element or Attribute?

Use an element when creating something new on the page that will encapsulate a self-contained piece of functionality. For example, if we’re creating a clock (and couldn’t care less about supporting old versions of Internet Explorer) we’d make a clock directive and declare it in the DOM like so:

1 <my-clock></my-clock>

Doing so tells users of our directive that we’re specifying a whole piece of our application. Our clock is not decorating or augmenting a pre-existing clock; instead, it’s declaring a whole unit. While we could have used an attribute in this scenario (Angular doesn’t care), we’ve chosen to use an element because it clarifies our intent.

Use an attribute when decorating an existing element with data or behavior. Using our clock example, let’s pretend we’re interested in an an analog version of the clock:

1 <my-clock clock-display="analog"></my-clock>

The choice usually comes down to whether the directive being defined provides the core behavior of a component on the page or will decorate or augment a core directive with optional behavior, state, or anything else one might find while programming in the wild (like analog output for a clock).

The guiding principle here is that the format of a directive tells a story about our applications and reveals the intent of each piece, creating exemplary code that is easy to understand and share with others.

The other distinction that is important to make for a given directive is whether it creates, inherits, or isolates itself from the scope of its containing environment. This child-parent relationship plays another key role in the composition and reusability of our directives, a topic we’ll spend more time discussing when we talk about the scope of a directive.

Priority (number)

The priority option can be set to a number. Most directives omit this option, in which case it defaults to 0; however, there are cases where setting a high priority is important and/or necessary. For example, ngRepeat sets this option at 1000 so that it always gets invoked before other directives on the same element.

If an element is decorated with two directives that have the same priority, then the first directive declared on the element will be invoked first. If one of the directives has a higher priority than the other, then it doesn’t matter which is declared first: The one with the higher priority will always run first.

 	
 [image: information]
 	
 ngRepeat has the highest priority of any built-in directive. It is always invoked before other directives on the same element. Performance is a key factor here. We’ll learn more about performance when we discuss the compile option.

Terminal (boolean)

terminal is a boolean option; it can be set to true or false.

We use the terminal option to tell Angular to stop invoking any further directives on an element that have a higher priority. All directives with the same priority will be executed, however.

As a result, don’t further decorate an element if it’s already been decorated with a directive that is terminal and has equal or higher priority – it won’t be invoked.

Template (string|function)

template is optional. If provided, it must be set to either:

	a string of HTML

 	a function that takes two arguments – tElement and tAttrs – and returns a string value representing the template. The t in tElement and tAttrs stands for template, as opposed to instance. We’ll discuss the difference between a template element/attribute and an instance element/attribute when we cover the link and compile options.

Angular treats the template string no differently than any other HTML. It has a scope that can be accessed using double curly markup, like {{ expression }}.

When a template string contains more than one DOM element or only a single text node, it must be wrapped in a parent element. In other words, a root DOM element must exist:

1 template: '\
2 <div> <-- single root element -->\
3 Click me\
4 <h1>When using two elements, wrap them in a parent element</h1>\
5 </div>\
6 '

Furthermore, note the use of backslashes, at the end of each line. We include these so that Angular can parse multi-line strings correctly. In production code, it would be a better choice to use the templateUrl option because multi-lines strings are a nightmare to look at and maintain.

One of the most important features to understand about a template string or templateURL is how it gets its scope. In the beginning_directives chapter, we touched upon how scope is passed into a directive.

templateUrl (string|function)

templateUrl is optional. If provided, it must be set to either:

	the path to an HTML file, as a string

 	a function that takes two arguments: tElement and tAttrs. The function must return the path to an HTML file as a string.

In either case, the template URL is passed through the built-in security layer that Angular provides; specifically $getTrustedResourceUrl, which protects our templates from being fetched from untrustworthy resources.

By default, the HTML file will be requested on demand via Ajax when the directive is invoked. We should bear two important factors in mind:

	When developing locally, we should run a server in the background to serve up the local HTML templates from our file system. Failing to do so will raise a Cross Origin Request Script (CORS) error.

 	Template loading is asynchronous, which means that compilation and linking are suspended until the template is loaded.

Having to wait for a large number of templates to asynchronously load via Ajax can really slow down a client-side application. To prevent such a delay, it’s possible to cache one or more HTML templates prior to deploying an application. Caching is a better option in most cases because Angular will not make an Ajax request, thus providing better performance by minimizing the number of requests run. For more information about caching, check out the in-depth discussion on caching here.

After a template has been fetched, Angular caches it in the default $templateCache services. In production, we can pre-cache these templates into a JavaScript file that defines our templates so we don’t have to fetch the templates over XHR. For more information about how this adjustment works, see the next steps chapter.

replace (boolean)

replace is optional. If provided, it must be set to true. It is set to false by default. That means that the directive’s template will be appended as a child node within the element where the directive was invoked:

1 <div some-directive></div>

1 .directive('someDirective' function() {
2 return {
3 template: '<div>some stuff here<div>'
4 }
5 })

The result when the directive is invoked will be (remember that this behavior is the default, when replace is false):

1 <div some-directive>
2 <div>some stuff here<div>
3 </div>

If we set replace as true:

1 .directive('someDirective' function() {
2 return {
3 replace: true // MODIFIED
4 template: '<div>some stuff here<div>'
5 }
6 })

then the result when the directive is invoked will be:

1 <div>some stuff here<div>

Directive Scope

In order to fully understand the rest of the options available inside a directive definition object, we’ll need to have an understanding of how scope works.

A special object, known as the $rootScope, is initially created when we declare the ng-app directive in the DOM:

1 <div ng-app="myApp"
2 ng-init="someProperty = 'some data'"></div>
3 <div ng-init="siblingProperty = 'more data'">
4 Inside Div Two
5 <div ng-init="aThirdProperty"></div>
6 </div>

In the code above, we set three properties on the root scope of our app: someProperty, siblingProperty, and anotherSiblingProperty.

From here on out, every directive invoked within our DOM will:

	directly use the same object,

 	create a new object that inherits from the object, or

 	create an object that is isolated from the object

The example above shows the first case. The second div is a sibling element that has get and set access to the $rootScope. Furthermore, inside this second div is another div that also has get and set access to the exact same root scope.

Just because a directive is nested within another directive does not necessarily mean its scope has been changed. By default, child directives are given access to the exact same scope as their parent DOM nodes. The reason for that can be understood by learning about the scope directive option, which is set to false by default.

Scope Option (boolean|object)

scope is optional. It can be set to true or to an object, {}. By default, it is set to false.

When scope is set to true, a new scope object is created that prototypically inherits from its parent scope.

If multiple directives on an element provide an isolate scope, only one new scope is applied. Root elements within the template of a directive always get a new scope; thus, for those objects, scope is set to true by default.

The built-in ng-controller directive exists for the sole purpose of creating a new child scope that prototypically inherits from the surrounding scope. It creates a new scope that inherits from the surrounding scope.

Let’s amend our last example, with this knowledge in hand:

 1 <div ng-app="myApp"
 2 ng-init="someProperty = 'some data'"></div>
 3 <div ng-init="siblingProperty = 'more data'">
 4 Inside Div Two: {{ aThirdProperty }}
 5 <div ng-init="aThirdProperty = 'data for 3rd property'"
 6 ng-controller="SomeCtrl">
 7 Inside Div Three: {{ aThirdProperty }}
 8 <div ng-init="aFourthProperty">
 9 Inside Div Four: {{ aThirdProperty }}
10 </div>
11 </div>
12 </div>

If we run the previous code by itself, it fails. This failure occurs because we haven’t defined an associated controller in our JavaScript, so let’s do that:

1 angular.module('myApp', [])
2 .controller('SomeCtrl', function($scope) {
3 // we can leave it empty, it just needs to be defined
4 })

If we reload the page, we can see that inside the second div, {{ aThirdProperty }} is undefined and therefore outputs nothing. Inside the third div, however, the value we set inside our inherited scope data for a 3rd property is shown.

 [image: Directives]Directives

To further prove the point that this scope flows downwards during inheritance, and not upwards, let’s make another child scope and check to see that {{ aThirdProperty }} inherits its value from its parent.

 1 <div ng-app="myApp"
 2 ng-init="someProperty = 'some data'"></div>
 3 <div ng-init="siblingProperty = 'more data'">
 4 Inside Div Two: {{ aThirdProperty }}
 5 <div ng-init="aThirdProperty = 'data for 3rd property'"
 6 ng-controller="SomeCtrl">
 7 Inside Div Three: {{ aThirdProperty }}
 8 <div ng-controller="SecondCtrl">
 9 Inside Div Four: {{ aThirdProperty }}
10 </div>
11 </div>
12 </div>

We’ll need to update our JavaScript so that SecondCtrl is defined:

1 angular.module('myApp', [])
2 .controller('SomeCtrl', function($scope) {
3 // we can leave it empty, it just needs to be defined
4 })
5 .controller('SecondCtrl', function($scope) {
6 // also can be empty
7 })

To create our own directive whose scope prototypically inherits from the outside world, set the scope property to true:

1 angular.module('myApp', [])
2 .directive('myDirective', function() {
3 return {
4 restrict: 'A',
5 scope: true
6 }
7 })

Now let’s use our directive to alter the scope of the DOM:

 1 <div ng-app="myApp"
 2 ng-init="someProperty = 'some data'"></div>
 3 <div ng-init="siblingProperty = 'more data'">
 4 Inside Div Two: {{ aThirdProperty }}
 5 <div ng-init="aThirdProperty = 'data for 3rd property'"
 6 ng-controller="SomeCtrl">
 7 Inside Div Three: {{ aThirdProperty }}
 8 <div ng-controller="SecondCtrl">
 9 Inside Div Four: {{ aThirdProperty }}
10

11 Outside myDirective: {{ myProperty }}
12 <div my-directive ng-init="myProperty = 'wow, this is cool'">
13 Inside myDirective: {{ myProperty }}
14 <div>
15 </div>
16 </div>
17 </div>

 Live JS Bin

Now that we understand how surrounding scope and inherited scope work, there remains only one piece to the scope puzzle: isolate scope.

Isolate Scope

Isolate scope is likely the most confusing of the three options available when setting the scope property, but also the most powerful. Isolate scope is based on the ideology present in Object Oriented Programming. Languages like Small Talk and design principles like SOLID find their way into Angular via directives that use isolate scope.

The main use case for such directives is reusable widgets that can be shared and used in unexpected contexts without polluting the scope around them or having their internal scope corrupted inadvertently.

To create a directive with isolate scope we’ll need to set the scope property of the directive to an empty object, {}. Once we’ve done that, no outer scope is available:

1 Outside myDirective: {{ myProperty }}
2 <div my-directive ng-init="myProperty = 'wow, this is cool'">
3 Inside myDirective: {{ myProperty }}
4 <div>

1 angular.module('myApp', [])
2 .directive('myDirective', function() {
3 return {
4 restrict: 'A',
5 scope: {}
6 };
7 })

 Live JS Bin

A look at the JS Bin reveals that it seems almost identical to setting scope to true. We can see a difference by making another directive with inherited scope and comparing the two:

1 <div ng-init="myProperty = 'wow, this is cool'"></div>
2 Surrounding scope: {{ myProperty }}
3 <div my-inherit-scope-directive="SomeCtrl">
4 Inside an directive with inherited scope: {{ myProperty }}
5 </div>
6 <div my-directive>
7 Inside myDirective, isolate scope: {{ myProperty }}
8 <div>

The JavaScript code:

 1 angular.module('myApp', [])
 2 .directive('myDirective', function() {
 3 return {
 4 restrict: 'A',
 5 scope: {}
 6 };
 7 })
 8 .directive('myInheritScopeDirective', function() {
 9 return {
10 restrict: 'A',
11 scope: true
12 };
13 })

 Live JS Bin

With the most important scope-related concepts out of the way, we can bind properties on our isolated scope with the outside world, allowing us to poke holes through the isolate scopes.

Two-Way Data Binding

Perhaps the most powerful feature in Angular, two-way data binding allows us to bind the value of a property inside the private scope of our directive to the value of an attribute available within the DOM. In the previous chapter on directives we looked at a good example of how ng-model provides two-way data binding with the outside world and a custom directive we created; this example in many ways mirrored the behavior that ng-bind, itself, provides. Review that chapter and practice the example to gain a greater understanding of this important concept.

Transclude

transclude is optional. If provided, it must be set to true. It is set to false by default.

Transclusion is sometimes considered an advanced topic, but once it makes sense it’ll fit right in with the rules we’ve just learned about scope. We’ll also see that it’s a very powerful addition to our tool set, especially when building customizable chunks of HTML that can be shared with a team, between projects, and with the rest of the Angular community.

Transclusion is most often used for creating reusable widgets. A great example is a modal box or a navbar.

Transclude allows us to pass in an entire template, including its scope, to a directive. Doing so gives us the opportunity to pass in arbitrary content and arbitrary scope to a directive. In order for scope to be passed in, the scope option must be isolated, {}, or set to true. If the scope option is not set, then the scope available inside the directive will be applied to the template passed in.

 	
 [image: information]
 	
 Only use transclude: true when you want to create a directive that wraps arbitrary content.

Transclusion makes it easy to allow users of our directive to customize all these aspects at once by allowing them to provide their own HTML template that has its own state and behavior.

Let’s walk through a small example where we provide a reusable directive that others can customize.

Let’s create a resuable sidebar box, similar to the sidebars that are popular with WordPress blogs. We want to keep our boxes’ styling consistent, but want to reduce the amount of HTML that we have to write for each one.

For instance, let’s say we want to create a sidebar box that takes a title and some HTML content, like so:

1 <div sidebox title="Links">
2
3 First link
4 Second link
5
6 </div>

We can create the sidebox directive fairly simply by creating a directive with the transclude option set to true:

 1 angular.module('myApp', [])
 2 .directive('sidebox', function() {
 3 return {
 4 restrict: 'EA',
 5 scope: {
 6 title: '@'
 7 },
 8 transclude: true,
 9 template: '<div class="sidebox">\
10 <div class="content">\
11 <h2 class="header">{{ title }}</h2>\
12 \
13 \
14 </div>\
15 </div>'
16 }
17 });

This code tells the Angular compiler that where it finds the ng-transclude directive is where it should place the content that it has captured from inside the DOM element.

We can reuse this directive with the transclusion to provide a secondary element without needing to worry about the styles and the layout.

For instance, this code will yield us two boxes with consistent styles:

 1 <div sidebox title="Links">
 2
 3 First link
 4 Second link
 5
 6 </div>
 7 <div sidebox title="TagCloud">
 8 <div class="tagcloud">
 9 Graphics
10 AngularJS
11 D3
12 Front-end
13 Startup
14 </div>
15 </div>

 [image: sidebox]sidebox

If we use transclude, watching for model property changes from within the controller of a directive will not work properly. That is why best practice always recommends using the $watch service from within the link function.

Controller (string|function)

The controller option takes a string or a function. When set to a string, the name of the string is used to look up a controller constructor function registered elsewhere in our application:

 1 angular.module('myApp', [])
 2 .directive('myDirective', function() {
 3 restrict: 'A', // always required
 4 controller: 'SomeCtrl'
 5 })
 6
 7 // elsewhere in our application
 8 // either in the same file or another
 9 // one included by our index.html
10 angular.module('myApp')
11 .controller('SomeCtrl', function($scope, $element, $attrs, $transclude) {
12 // controller logic goes here
13 })

A controller can be defined inline within a directive by setting the controller function as an anonymous constructor function:

1 angular.module('myApp', [])
2 .directive('myDirective', function() {
3 restrict: 'A',
4 controller:
5 function($scope, $element, $attrs, $transclude) {
6 // controller logic goes here
7 }
8 })

As the above examples suggest, the arguments that we can pass into a controller are:

$scope

The current scope associated with the directive element.

$element

The current element directive element.

$attrs

The attributes object for the current element. For instance, the following element:

1 <div id="aDiv" class="box"></div>

has the attribute object of:

1 {
2 id: "aDiv",
3 class: "box"
4 }

$transclude

A transclude linking function pre-bound to the correct transclusion scope.

This transclude linking function is the function that will run to actually create a clone of the element and manipulate the DOM.

 	
 [image: information]
 	
 It goes against the Angular Way to manipulate the DOM inside of a controller, but it is possible through the linking function. It is a best practice to only use this transcludeFn inside the compile option.

For example, let’s be lazy and say that we just want to add a linktag through the use of a directive. We can do that inside the controller using the $transclude function like so:

 1 angular.module('myApp')
 2 .directive('link', function() {
 3 return {
 4 restrict: 'EA',
 5 transclude: true,
 6 controller:
 7 function($scope, $element, $transclude) {
 8 $transclude(function(clone) {
 9 var a = angular.element('<a>');
10 a.attr('href', clone.text());
11 a.text(clone.text());
12 $element.append(a);
13 });
14 }
15 }
16 });

A directive’s controller can often be interchanged with the directive’s link function. The main use case for a controller is when we want to provide reusable behavior between directives. As the link function is only available inside the current directive, any behavior defined within is not shareable.

 	
 [image: information]
 	
 The link function provides isolation between directives, while the controller defines shareable behavior.

Because a directive can require the controller of another directive, however, controllers are a great place to place actions we may want to use in more than one directive.

The controller option attaches a controller to the template of the directive, acting just like ngController would if it were the parent scope of the directive’s template.

Using the controller option is good when we want to expose an API to other directives; otherwise, we can rely on link to provide us local functionality for the directive element. It’s better to use link when we use scope.$watch() or when we’re doing any interaction with the live scope of the DOM.

Technically, the $scope passed into a controller is passed in before the DOM is actually rendered to the screen. In certain situations, for example when working with transcludes, the scope inside a controller may reflect a different scope than we might expect, and the $scope object in such cases is not always guaranteed to update.

 	
 [image: tip]
 	
 Use the scope argument passed into the link function when expecting to interact with the instance of the scope on screen.

ControllerAs (string)

The controllerAs option enables us to set a controller alias, thus allowing us to publish our controller under this name and giving the scope access to the controllerAs name. This step allows us to reference the controller from inside the view and even allows us to not need to inject $scope.

For instance, we can create a MainCtrl that never injects $scope, like so:

1 angular.module('myApp')
2 .controller('MainCtrl', function() {
3 this.name = "Ari";
4 });

Now, in our HTML, we can simply use this MainCtrl without needing to reference the scope at all.

1 <div ng-app ng-controller="MainCtrl as main">
2 <input type="text" ng-model="main.name" />
3 {{ main.name }}
4 </div>

This option may seem trivial, but it gives us a lot of power in how we can use and create anonymous controllers in our routes and directives. That power allows us to create dynamic objects as controllers that are isolated and easy to test.

For instance, we can create an anonymous controller in a directive, like so:

 1 angular.module('myApp')
 2 .directive('myDirective', function() {
 3 return {
 4 restrict: 'A',
 5 template: '<h4>{{ myCtrl.msg }}</h4>',
 6 controllerAs: 'myCtrl',
 7 controller: function() {
 8 this.msg = "Hello World"
 9 }
10 }
11 });

require (string|array)

The require option can be set to a string or an array of strings. The string(s) contain the name of another directive. require is used to inject the controller of the required directive as the fourth parameter of the current directive’s linking function.

The string or strings (if it is an array) provided are the names of directives that reside in the current scope of the current directive.

The scope setting will affect what the surrounding scope refers to, be it an isolate scope, an independent scope, or no scope at all. In all cases, the Angular compiler will consult the template of the current directive when looking for child controllers.

Without using the ^ prefix, the directive only looks for the controller on its own element.

1 // ...
2 restrict: 'EA',
3 require: 'ngModel'
4 // ...

This directive definition will only look for the ng-model="" definition in the local scope of the directive.

1 <!-- Our directive will find the ng-model on the local scope -->
2 <div my-directive ng-model="object"></div>

The string(s) provided to the require option may optionally be prefixed with the following options, which change the behavior when looking up a controller:

 ?

If the required controller is not found on the directive provided, pass null to the 4th argument of the link function.

 ^

If we provide the prefix ^, then the directive will look upwards on its parent chain for the controller in the require option.

 ?^

Combine the behavior of the prior two options where we optionally require the directive and look up the parent chain for the directive.

no prefix

If we pass no prefix, we tell the directive to locate the required controller on the named directive provided and throw an error if no controller (or directive by that name) is found.

Technically, we need to have a controller associated with anything we put in the require option.

AngularJS Life Cycle

Before our Angular application boots, it sits in our text editor as raw HTML. Once we’ve booted the app, and the compile and link stages have taken place, however, we’re left with a live data-bound application that responds on the fly to changes made by the user on the scope to which our HTML is bound. How does this magic take place, and what do we need to know in order to build effective applications?

There are two main phases that take place.

Compile Phase

The first is called the compile phase. During the compile phase, Angular slurps up our initial HTML page and begins processing the directives we declared according to the directive definitions we’ve defined within our application’s JavaScript.

Each directive can have a template that may contain directives, which may have their own templates. When Angular invokes a directive in the root HTML document, it will traverse the template for that directive, which itself may contain directives, each with its own template.

 	
 [image: information]
 	
 This tree of templates can go arbitrarily deep and wide, but there is one caveat. While it’s true that an element can be backed or decorated (via attributes) with more than one directive and that any directive can contain a template that itself may contain directives with templates, only the template belonging to the higest-priority directive will be parsed and added to the tree of templates. The practical advice here is to separate directives that contain templates from those that add behavior. Never further decorate an element with another directive if that element already has a directive that brings its own template. Only the template of the directive with the highest priority will have its template compiled.

Once a directive and its child templates have been walked or compiled, a function is returned for the compiled template known as the template function. Before the template function for a directive is returned, however, we have the opportunity to modify the compiled DOM tree.

At this point the DOM tree is not data bound, meaning we’ve got just plain HTML we can manipulate with little to no performance costs. During this phase, built-in directives, such as ng-repeat and ng-transclude, take advantage of this fact and manipulate the DOM before it has been bound to any scope data.

ng-repeat, for example, loops over the array or object it has been given, building out the full representation of the DOM before passing the result off for data binding.

If we’re building an unordered list using ng-repeat, where each is decorated with the ng-click directive, this process provides us with performance that is orders of magnitude faster than if we had built the list manually, especially as our list approaches 100 elements.

The difference is that instead of cloning an , linking it with data, and then repeating that for each item in the loop, we’re simply building out the unordered list first, then passing the new version of the DOM (the compiled DOM) to the linking phase, the next phase in the directive life cycle.

Once we have compiled a complete representation of a single directive, we momentarily have access to it via the compile function, whose method signature includes access to the element where the directive was declared (tElement) and other attributes provided to that element(tAttrs). This compile function returns the template function (mentioned above), which includes the entire parsed tree.

The main takeaway here is that because each directive may have its own template and its own compile function, each directive returns its own template function. The top-level directive that started the chain returns the combined template function of all its children, but anywhere within that tree, we have access to just that branch via the compile function.

Finally, the template function is passed to the link function, where scope, determined by the directive definition rules of each directive in the compiled DOM tree, is applied all at once. This compile then link process provides our applications with huge performance gains.

Compile (object|function)

The compile option can return an object or a function.

Understanding the compile vs link option is one of the more advanced topics we’ll run across in Angular, and it provides us with considerable context about how Angular really works.

The compile option by itself is not explicitly used very often; however, the link function is used very often. Under the hood, when we set the link option, we’re actually creating a function that will define the post() link function so the compile() function can define the link function.

Oftentimes, when we set the compile function, we’re interested in manipulating the DOM before we place the directive on it with live data. Here, it is safe to manipulate HTML, add and remove elements, etc.

 	
 [image: information]
 	
 The compile option and the link option are mutually exclusive. If both are set, then the compile option will be expected to return the link function, while the link option will simply be ignored.

 1 // ...
 2 compile: function(tEle, tAttrs, transcludeFn) {
 3 var tplEl = angular.element('<div>' +
 4 '<h2></h2>' +
 5 '</div>');
 6 var h2 = tplEl.find('h2');
 7 h2.attr('type', tAttrs.type);
 8 h2.attr('ng-model', tAttrs.ngModel);
 9 h2.val("hello");
10 tEle.replaceWith(tplEl);
11 return function(scope, ele, attrs) {
12 // The link function
13 }
14 }
15 // ...

The template instance and link instance may be different objects if the template has been cloned. Thus, we can only do DOM transformations that are safe to do to all cloned DOM nodes within the compile function. Don’t do DOM listener registration: That should be done in the linking function.

The compile function deals with transforming the template DOM.

The link function deals with linking scope to the DOM.

Before scope is linked to the DOM, we may manually manipulate the DOM. In practice, this manipulation is rather rare when writing custom directives, but there are a few built-in directives that take advantage of this functionality. Understanding the process will make help us understand how Angular actually works.

Link

We use the link option to create a directive that manipulates the DOM.

The link function is optional. If the compile function is defined, it returns the link function; therefore, the compile function will overwrite the link function when both are defined. If our directive is simple and doesn’t require setting any additional options, we may return a function from the factory function (callback function) instead of an object. When doing so, this function will be the link function.

These two definitions of the directive are functionally equal:

 1 angular.module('myApp' [])
 2 .directive('myDirective', function() {
 3 return {
 4 pre: function(tElement, tAttrs, transclude) {
 5 // executed before child elements are linked
 6 // NOT safe to do DOM transformations here b/c the `link` function
 7 // called afterward will fail to locate the elements for linking
 8 },
 9 post: function(scope, iElement, iAttrs, controller) {
10 // executed after the child elements are linked
11 // IS safe to do DOM transformations here
12 // same as the link function, if the compile option here we're
13 // omitted
14 }
15 }
16 });

 1 angular.module('myApp' [])
 2 .directive('myDirective', function() {
 3 return {
 4 link: function(scope, ele, attrs) {
 5 return {
 6 pre: function(tElement, tAttrs, transclude) {
 7 // executed before child elements are linked
 8 // NOT safe to DOM transformations here b/c the `link` function
 9 // called afterward will fail to locate the elements for linking
10 },
11 post: function(scope, iElement, iAttrs, controller) {
12 // executed after the child elements are linked
13 // IS safe to do DOM transformations here
14 // same as the link function, if the compile option here we're
15 // omitted
16 }
17 }
18 }
19 });

When defining the compile function instead of the link function, the link function is the second method we can provide to the object returned, known as the postLink function. In essence, this fact describes precisely what the link function is responsible for. It is invoked after the compiled template has been linked to the scope, and is therefore responsible for setting up event listeners, watching for data changes, and manipulating the live DOM.

The link function has control over the live data-bound DOM, and, as such, performance considerations should be taken into account. Review the section on the life cycle of a directive for more information on performance concerns when choosing to implement something in the compile function versus the link function.

The link function has the following signature:

1 link: function (scope, element, attrs) {
2 // manipulate the DOM in here
3 }

If the directive definition has been provided with the require option, the method signature will gain a fourth argument representing the controller or controllers of the required directive:

1 require 'SomeCtrl',
2 link: function (scope, element, attrs, SomeCtrl) {
3 // manipulate the DOM in here, with access to the controller of the
4 // required directive
5 }

If the require option was given an array of directives, the fourth argument will be an array representing the controllers for each of the required directives.

Let’s go over each of the arguments available to the link function:

 scope

The scope to be used by the directive for registering watches from within the directive.

 iElement

The instance element is the element where the directive is to be used. We should only manipulate children of this element in the postLink function, since the children have already been linked.

 iAttrs

The instance attributes are a normalized (camelCased) list of attributes declared on this element and are shared between all directive linking functions. These are passed as JavaScript objects.

 controller

The controller argument points to the controller that’s defined by the require option. If there is no require option defined, then this controller argument is set as undefined.

The controller is shared among all directives, which allows the directives to use the controllers as a communication channel (public API). If multiple requires are set, then this will be an array of controller instances, rather than just a single controller.

ngModel

The ngModel usage is a special directive name, as it gives us a deeper API for handling data from within a controller. When we use the ngModel attribute from within a directive, it will get access to a special API that deals with data binding, validations, CSS updates, and other things that don’t deal with the actual DOM.

The ngModel controller, which is injected along with ngModel when we use it in our directive, contains several methods. In order to gain access to this ngModelController, we must use the require option (as we see above):

 1 angular.module('myApp')
 2 .directive('myDirective', function() {
 3 return {
 4 require: '?ngModel',
 5 link: function(scope, ele, attrs, ngModel) {
 6 if (!ngModel) return;
 7 // Now we have a hold of the
 8 // ngModelController instance
 9 // inside of our directive
10 }
11 };
12 });

 	
 [image: information]
 	
 Without passing the require option, the ngModelController will not be passed into our directive.

Notice that this directive does not have an isolated scope. If we do set the directive to have the isolate scope, then the ngModel value will not update the outer ngModel value: Angular looks up this value outside of the local scope.

In order to set the view value of a scope, we must call the API function ngModel.$setViewValue().

The $setViewValue() function takes a single argument:

value (string)

The value is the actual value to which we want to set the ngModel instance. This method updates the local $viewValue on the controller and then passes that value through each of the $parser functions (including all validations).

After the value is parsed and the $parser pipeline has completed its function, the value is assigned to the $modelValue property and handed to the expression provided by the ng-model attribute on the directive.

Finally, once all of these steps have been completed, all of the change listeners in the $viewChangeListeners list are called.

Note that simply by calling $setViewValue() alone does not invoke a new digest cycle, so even after we set the $viewValue, we need to trigger a digest when we want the directive to update.

Using the $setViewValue() method is a good idea when creating a custom directive that listens for custom events (for instance, when using a jQuery plugin that has a callback). We’ll want to set the $viewValue with the callback change and execute a digest cycle.

 1 angular.module('myApp')
 2 .directive('myDirective', function() {
 3 return {
 4 require: '?ngModel',
 5 link: function(scope, ele, attrs, ngModel) {
 6 if (!ngModel) return;
 7
 8 $(function() {
 9 ele.datepicker({
10 onSelect: function(date) {
11 // set the view and call apply
12 scope.$apply(function() {
13 ngModel.$setViewValue(date);
14 });
15 }
16 })
17 });
18 }
19 };
20 });

Custom Rendering

It’s possible to define how the view actually gets rendered by defining the $render method on the controller. This method will be applied after the $parser pipeline has completed.

We should apply this method only sparingly, as it can be disruptive to the Angular Way:

 1 angular.module('myApp')
 2 .directive('myDirective', function() {
 3 return {
 4 require: '?ngModel',
 5 link: function(scope, ele, attrs, ngModel) {
 6 if (!ngModel) return;
 7
 8 ngModel.$render = function() {
 9 element.html(
10 ngModel.$viewValue() || 'None'
11);
12 }
13 }
14 };
15 });

Properties

ngModelController has a few properties available that we can examine and even modify to change our view.

$viewValue

The $viewValue property holds onto the actual string value that’s updated in the view.

$modelValue

The $modelValue is the value held by the model. The $modelValue and the $viewValue can be different, depending upon the $parser pipeline.

$parsers

The $parsers value is an array of functions that get executed in a pipeline. When the ngModel control reads the value from the DOM, this value will be passed into the first $parser function. When it’s complete, the return value will be passed to the next $parser, and so on and so forth.

These are used to sanitize and modify the value. We have described how the validation pipeline works, at a basic level. For more information about creating a $parser for validation, head over to the validations chapter.

$formatters

The $formatters value is an array of functions that get executed as a pipeline when the model value changes. It is called on the way out of the $parser pipeline and is used to format and convert values to display within the bound control.

$viewChangeListeners

The $viewChangeListeners value is an array of functions to execute when the view value has changed. Using $viewChangeListeners is a way to remove a $watch on a value yet retain similar behavior. These functions do not need to return a value, as they are ignored.

$error

The $error value holds onto the object of errors where the key is the failed validation name and the value is the actual error message.

$pristine

The $pristine value is a boolean that tells us whether or not the user has made any changes to the control yet.

$dirty

The $dirty attribute value is the inverse of the $pristine value that tells us whether or not the user has interacted with the control.

$valid

The $valid value tells us if there is no error on the control. It will be true if there are no errors and false if there are.

$invalid

The $invalid value tells us whether or not there is at least one error on the control and is the inverse of the $valid value.

Angular Module Loading

Angular Module Loading

Angular modules, themselves, have the opportunity to configure themselves before the module actually bootstraps and starts to run. We can apply different sets of logic during the bootstrap phase of the app.

Configuration

Angular executes blocks of configuration during the provider registration and configuration phases in the bootstrapping of the module. This phase is the only part of the Angular flow that may be modified before the app starts up.

1 angular.module('myApp', [])
2 .config(function($provide) {
3 // Configuration goes here
4 });

Throughout this book, we use methods that are syntactic sugar around the .config() function and get executed at configuration time. For instance, when we create a factory or a directive on top of the module:

 1 angular.module('myApp', [])
 2 .factory('myFactory', function() {
 3 var service = {};
 4 return service;
 5 })
 6 .directive('myDirective', function() {
 7 return {
 8 template: '<button>Click me</button>'
 9 }
10 })

Angular executes these helper functions at compile time. They are functionally equivalent to:

 1 angular.module('myApp', [])
 2 .config(function($provide, $compileProvider) {
 3 $provide.factory('myFactory', function() {
 4 var service = {};
 5 return service;
 6 });
 7 $compileProvider.directive('myDirective',
 8 function() {
 9 return {
10 template: '<button>Click me</button>'
11 }
12 })
13 });

In particular, it’s also important to note that Angular runs these functions in the order in which they are written and registered. That is to say that we cannot inject a provider that has not yet been defined.

 	
 [image: information]
 	
 The only exception to the rule of in-order definitions is the constant() method. We always place these at the beginning of all configuration blocks.

When writing configuration for a module, it’s important to note that there are only a few types of objects that we can inject into the .config() function: providers and constants.

 	
 [image: information]
 	
 If we inject any old service into a .config() function, then we might accidentally instantiate one before we actually configure it.

The by-product of this strict requirement for configurable services is that we can only inject custom services that are built with the provider() syntax and cannot inject other services.

For more information on how to build with the provider syntax, head over to the services chapter.

These .config() blocks are how we’ll custom configure our own services, such as setting API keys and custom URLs.

We can also define multiple configuration blocks, which are executed in order and allow us to focus our configuration in the different phases of the app.

 1 angular.module('myApp', [])
 2 .config(function($routeProvider) {
 3 $routeProvider.when('/', {
 4 controller: 'WelcomeCtrl',
 5 template: 'views/welcome.html'
 6 });
 7 })
 8 .config(function(ConnectionProvider) {
 9 ConnectionProvider.setApiKey('SOME_API_KEY');
10 })

The config() function takes a single argument:

configFunction (function)

The function that Angular executes on module load.

Run Blocks

Unlike the configuration blocks, run blocks are executed after the injector is created and are the first methods that are executed in any Angular app.

Run blocks are the closest thing in Angular to the main method. The run block is code that is typically hard to unit test and is related to the general app.

Typically, these run blocks are places where we’ll set up event listeners that should happen at the global scale of the app. For example, we’ll use the .run() block to set up listeners for routing events or unauthenticated requests.

Let’s say that we want to run a function that validates that we have an authenticated user every time that we change our route. The only logical place to set this functionality is in the run method:

 1 angular.module('myApp', [])
 2 .run(function($rootScope, AuthService) {
 3 $rootScope.$on('$routeChangeStart',
 4 function(evt, next, current) {
 5 // If the user is NOT logged in
 6 if (!AuthService.userLoggedIn()) {
 7 if (next.templateUrl === "login.html") {
 8 // Already heading to the login route
 9 // so no need to redirect
10 } else {
11 $location.path('/login');
12 }
13 }
14 })
15 });

The run() function takes a single argument:

initializeFn (function)

Angular executes this function after it creates the injector.

Multiple Views and Routing

Multiple Views and Routing

In a single-page app, navigating from one page view to another is crucial. When apps grow more and more complex, we need a way to manage the screens that a user will see as they navigate their way through the app.

We can already support such management by including template code in line in the main HTML, but not only will this in-line code grow large and unmanageable, it will also make it difficult to allow other developers to join in development.

Rather than including multiple templates in the view (which we could do with the ng-include directive), we can break out the view into a layout and template views and only show the view we want to show based upon the URL the user is currently accessing.

We’ll break these partial templates into views to be composed inside of a layout template. AngularJS allows us to do that by declaring routes on the $routeProvider, a provider of the $route service.

Using the $routeProvider, we can take advantage of the browser’s history navigation and enable users to bookmark and share specific pages, as it uses the current URL location in the browser.

Installation

As of version 1.2.2, ngRoutes has been pulled out of the core of Angular into its own module. In order to use routes in our Angular app, we need to install and reference it in our app.

We can download it from code.angularjs.org and save it in a place that we can reference it from our HTML, like js/vendor/angular-route.js.

We can also install it using Bower, which will place it in our usual Bower directory. For more information about Bower, see the Bower chapter.

1 $ bower install --save angular-route

We need to reference angular-route in our HTML after we reference Angular itself.

1 <script src="js/vendor/angular.js"></script>
2 <script src="js/vendor/angular-route.js"></script>

Lastly, we need to reference the ngRoute module as a dependency in our app module:

1 angular.module('myApp', ['ngRoute']);

Layout Template

To make a layout template, we need to change the HTML in order to tell AngularJS where to render the template. Using the ng-view directive in combination with the router, we can specify exactly where in the DOM we want to place the rendered template of the current route.

For instance, a layout template might look something like:

1 <header>
2 <h1>Header</h1>
3 </header>
4 <div class="content">
5 <div ng-view></div>
6 </div>
7 <footer>
8 <h5>Footer</h5>
9 </footer>

In this case, we are placing all of the rendered content in the <div class="content">, whereas we’re leaving the <header> and <footer> elements intact on route changes.

The ng-view directive is a special directive that’s included with the ngRoute module. Its specific responsibility is to stand as a placeholder for $route view content.

It creates its own scope and nests the template inside of it.

 	
 [image: information]
 	
 The ng-view directive is a terminal directive at a 1000 priority. Angular will not run any directives on the element at a lower priority, which is most directives (i.e., all other directives on the <div ng-view></div> element are meaningless).

The ngView directive follows these specific steps:

	Any time the $routeChangeSuccess event is fired, the view will update

 	If there is a template associated with the current route:
 	Create a new scope

 	Remove the last view, which cleans up the last scope

 	Link the new scope and the new template

 	Link the controller to the scope, if specified in the routes

 	Emit the $viewContentLoaded event

 	Run the onload attribute function, if provided

Routes

We use one of two methods to declare all application routes in AngularJS: the when method and the otherwise method.

To create a route on a specific module or app, we use the config function.

1 angular.module('myApp', []).
2 config(['$routeProvider', function($routeProvider) {
3 }]);

 We’re using special dependency injection syntax here. For more information on this syntax, check out the dependency injection chapter.

Now, to add a specific route, we can use the when method. This method takes two parameters (when(path, route)).

This block shows how can create a single route:

1 angular.module('myApp', []).
2 config(['$routeProvider', function($routeProvider) {
3 $routeProvider
4 .when('/', {
5 templateUrl: 'views/home.html',
6 controller: 'HomeCtrl'
7 });
8 }]);

The first parameter is the route path, which is matched against the $location.path, the path of the current URL. Trailing or double slashes will still work. We can store parameters in the URL by starting off the name with a colon (for instance, :name). We’ll talk about how to retrieve these parameters using the $routeParams.

The second parameter is the configuration object, which determines exactly what to do if the route in the first parameter is matched. The configuration object properties that we can set are controller, template, templateURL, resolve, redirectTo, and reloadOnSearch.

A more complex routing scenario requires multiple routes and a catch-all that redirects a route.

 1 angular.module('myApp', []).
 2 config(['$routeProvider', function($routeProvider) {
 3 $routeProvider
 4 .when('/', {
 5 templateUrl: 'views/home.html',
 6 controller: 'HomeCtrl'
 7 })
 8 .when('/login', {
 9 templateUrl: 'views/login.html',
10 controller: 'LoginCtrl'
11 })
12 .when('/dashboard', {
13 templateUrl: 'views/dashboard.html',
14 controller: 'DashboardCtrl',
15 resolve: {
16 user: function(SessionService) {
17 return SessionService.getCurrentUser();
18 }
19 }
20 })
21 .otherwise({
22 redirectTo: '/'
23 });
24 }]);

controller

1 controller: 'MyCtrl'
2 // or
3 controller: function($scope) {}

If we set the controller property on the configuration object, the controller given will be associated with the new scope of the route. If we pass a string, it associates the registered controller on the module with the new route. If we pass a function, this function will be associated with the template as the controller for the DOM element.

template

1 template: '<div><h2>Route</h2></div>'

If we set the template property in the configuration object, Angular will render the HTML template in the ng-view DOM element.

templateUrl

1 templateUrl: 'views/template_name.html'

If the templateUrl property is set, then your app will attempt to fetch the view using XHR (utilizing the $templateCache). If it finds the template and can load it, Angular will render the template’s contents in the ng-view DOM element.

resolve

1 resolve: {
2 'data': ['$http', function($http) {
3 return $http.get('/api').then(
4 function success(resp) { return response.data; }
5 function error(reason) { return false; }
6);
7 }]
8 }

If we have set the resolve property, Angular will inject the elements of the map into the controller. If these dependencies are promises, they will be resolved and set as a value before the controller is loaded and before the $routeChangeSuccess event is fired.

The map object can be a:

	key, where the key is the string name of a dependency that will be injected into the controller

 	factory, where the factory can either be a string of the name of a service, a function whose result is injected into the controller, or a promise that is to be resolved (whereupon the resulting value is injected into the controller)

In the example above, resolve sends the $http request off and fills the value of ‘data’ as the result of the request. The data key of the map above will be injected into our controller, so it can be retrieved in the controller.

redirectTo

1 redirectTo: '/home'
2 // or
3 redirectTo: function(route, path, search)

If the redirectTo property is set with a string, then the value will change the path and trigger a route change to the new path.

If the redirectTo property is set with a function, the result of the function will be set as the value of the new path, triggering a route-change request.

If the redirectTo property is a function, Angular will call it with one of the following parameters:

1: The route parameters extracted from the current path
2: The current path
3: The current search

reloadOnSearch

If the reloadOnSearch option is set to true (by default), then reload the route when $location.search() is changed. If you set this option to false, then the page won’t reload the route if the search part of the URL changes. This tip is useful for nested routing or in-place pagination, etc.

Now we can set up our routes using the when function.

In this example, we’re going to set up two routes: a home route and an inbox route. We’ll also set the home route as the default route.

 1 angular.module('MyApp', []).
 2 config(['$routeProvider', function($routeProvider) {
 3 $routeProvider
 4 .when('/', {
 5 controller: 'HomeCtrl',
 6 templateUrl: 'views/home.html'
 7 })
 8 .when('/inbox/:name', {
 9 controller: 'InboxCtrl',
10 templateUrl: 'views/inbox.html'
11 })
12 .otherwise({redirectTo: '/'});
13 }]);

Above, we’ve set up these three routes with the when method. If no route matches, then the otherwise method will be called. Using the otherwise method, we’ve set up a default route of ‘/’.

When the browser loads the Angular app, it will default to the URL set as the default route. Unless we load the browser with a different URL, the default is the ‘/’ route.

$routeParams

As mentioned above, if we start a route param with a colon (:), AngularJS will parse it out and pass it into the $routeParams. For instance, if we set up a route like so:

1 $routeProvider
2 .when('/inbox/:name', {
3 controller: 'InboxCtrl',
4 templateUrl: 'views/inbox.html'
5 })

then Angular will populate the $routeParams with the key of :name, and the value of key will be populated with the value of the loaded URL.

If the browser loads the URL /inbox/all, then the $routeParams object will look like:

1 { name: 'all' }

As a reminder, to get access to these variables in the controller, we need to inject the $routeProvider in the controller:

1 app.controller('InboxCtrl', function($scope, $routeParams) {
2 // We now have access to the $routeParams here
3 });

$location Service

AngularJS provides a service that parses the URL in the address bar and gives you access to the route of the current path of your applications. It also gives you the ability to change paths and deal with any sort of navigation.

 The $location service provides a nicer interface to the window.location JavaScript object and integrates directly with our AngularJS apps.

We’ll use the $location service whenever we need to provide a redirect internal to our app, such as redirecting after a user signs up, changes settings, or logs in.

The $location service does not provide access to refreshing the entire page. If we need to refresh the entire page, we need to use the $window.location object (an interface to window.location).

path()

To get the current path, we can run the path() method:

1 $location.path(); // returns the current path

To change the current path and redirect to another URL in the app:

1 $location.path('/'); // change the path to the '/' route

The path method interacts directly with the HTML5 history API, so the user will be able to press the back button and be returned to the previous page.

replace()

If you want to redirect completely without giving the user the ability to return using the back button (it’s useful for times when a redirect will occur after they are redirected), then AngularJS provides the replace() method:

1 $location.path('/home');
2 $location.replace();
3 // or
4 $location.path('/home').replace();

absUrl()

If you want to get full URL representation with all segments encoded, use the absUrl() method:

1 $location.absUrl()

hash()

To get the hash fragment in the URL, we can use the hash() method:

1 $location.hash(); // return the current hash fragment

To change the current hash fragment, we can pass a string parameter into the method. Doing so returns the location object.

1 $location.hash('movies'); // returns $location

host()

We can get the host of the current URL by using the host() method:

1 $location.host(); // host of the current url

port()

The port of the current URL is available through the port() method:

1 $location.port(); // port of the current url

protocol()

The protocol of the current URL is available through the protocol() method:

1 $location.protocol(); // protocol of the current url

search()

To get the search part of the current URL, we can use the search() function:

1 $location.search();

We can pass in new search parameters, thus modifying the search portion of the URL:

1 // Setting search with an object
2 $location.search({name: 'Ari', username: 'auser'});
3 // Setting search with a string
4 $location.search('name=Ari&username=auser');

The search() method takes two parameters:

	search (optional string or object)

The search parameter represents the new search params. A hash object might contain an array of values as well.

	paramValue (optional string)

If the search is a string, then the paramValue will override a single search parameter. If the value is null, then the parameter will be removed.

url()

To get the URL of the current page, we can use the url() method:

1 $location.url(); // String of the url

We can set and change the URL using the url() method with parameters. This change modifies the path, search, and hash when called with parameters and returns $location.

1 // Set the new url
2 $location.url("/home?name=Ari#hashthing")

The url() can take two parameters:

	url (optional string)

This is the new URL without the base prefix.

	replace (optional string)

This parameter is the path that we’re going to change.

Routing Modes

The routing mode refers specifically to the format of the URL in the browser address bar. The default behavior of the $location service is to route using the hashbang mode.

The routing mode determines what the URL of your site will look like.

Hashbang Mode

Hashbang mode is a trick that AngularJS uses to provide deep-linking capabilities to your Angular apps. In hashbang mode (the fallback for html5 mode), URL paths take a prepended # character. They do not rewrite tags and do not require any server-side support. Hashbang mode is the default mode that AngularJS uses if it’s not told otherwise.

A hashbang URL looks like:

1 http://yoursite.com/#!/inbox/all

To be explicit and configure hashbang mode, it needs to be configured in the config function on an app module.

1 angular.module('myApp', ['ngRoute'])
2 .config(['$locationProvider', function($locationProvider) {
3 $locationProvider.html5Mode(false);
4 }]);

We can also configure the hashPrefix, which, in hashbang mode, is the ! prefix. This prefix is part of the fallback mechanism that Angular uses for older browsers. We can also configure this character. To configure the hashPrefix:

1 angular.module('myApp', ['ngRoute'])
2 .config(['$locationProvider', function($locationProvider) {
3 $locationProvider.html5Mode(false);
4 $locationProvider.hashPrefix('!');
5 }]);

HTML5 Mode

The other routing mode that AngularJS supports is html5Mode. This mode makes your URLs look like regular URLs (except that in older browsers they will look like the hashbang URL). For instance, the same route above in HTML5 mode would look like:

1 http://yoursite.com/inbox/all

Inside AngularJS, the $location service uses HTML5’s history API, allowing for our app to use the regular URL path. The $location service automatically falls back to using hashbang URLs if the browser doesn’t support the HTML5 history API.

One interesting feature of the $location service is that if a modern browser that does support the HTML5 history API loads a hashbang URL, it will rewrite the URL for our users.

In HTML5 mode, Angular takes care of rewriting links when specified in the tags. That is to say that as Angular compiles your app, it rewrites the href="" portion, depending upon the browser’s capabilities.

For example, with the tag: Person, a legacy browser’s URL will be rewritten to the hashbang URL equivalent: /index.html#!/person/42?all=true. In a modern browser, it will see the URL as it was intended.

The back-end server will have to support URL rewriting on the server side. To support HTML5 mode, the server will have to make sure to deliver the index.html page for all apps. That ensures that our Angular app will handle the route.

When writing links inside of our Angular app in html5mode, we’ll never want to use relative links. If you are serving your app using the root, it won’t be a problem; however, if you are serving in any other base route, our Angular app won’t be able to handle it.

Alternatively, you can set the base URL of your app using the <base> tag in the HEAD section of the HTML document:

1 <base href="/base/url" />

Routing Events

The $route service fires events at different stages of the routing flow. It’s possible to set up event listeners for these different routing events and react.

This functionality is useful particularly when you want to manipulate events based upon routes and is particularly useful for detecting when users are logged in and authenticated.

We need to set up an event listener to listen for routing events. To set it up, we use the $rootScope to listen for the event.

$routeChangeStart

Angular broadcasts $routeChangeStart before the route changes. This step is where the route services begin to resolve all of the dependencies necessary for the route change to happen and where templates and the resolve keys are resolved.

1 angular.module('myApp', [])
2 .run(['$rootScope', '$location', function($rootScope, $location) {
3 $rootScope.$on('$routeChangeStart',
4 function(evt, next, current) {
5 })
6 }])

The $routeChangeStart event fires with two parameters:

	The next URL to which we are attempting to navigate

 	The URL that we are on before the route change

$routeChangeSuccess

Angular broadcasts the $routeChangeSuccess event after the route dependencies have been resolved.

1 angular.module('myApp', [])
2 .run(['$rootScope', '$location', function($rootScope, $location) {
3 $rootScope.$on('$routeChangeSuccess', function(evt, next, previous) {
4 })
5 }])

The $routeChangeSuccess event fires with three parameters:

	The raw Angular evt object

 	The route where the user currently is

 	The previous route (or undefined if the current route is the first route)

$routeChangeError

Angular broadcasts the $routeChangeError event if any of the promises are rejected or fail.

1 angular.module('myApp', [])
2 .run(['$rootScope', '$location', function($rootScope, $location) {
3 $rootScope.$on('$routeChangeError', function(current, previous, rejection) {
4 })
5 }])

The $routeChangeError event fires with three parameters:

	The current route information

 	The previous route information

 	The rejection promise error

$routeUpdate

Angular broadcasts the $routeUpdate event if the reloadOnSearch property has been set to false and we’re reusing the same instance of a controller.

Note About Indexing

Web crawlers traditionally have a hard time with fat client-side JavaScript apps. To support web crawlers that run through the app, we need to add a meta tag in the head. This meta tag causes the crawler to request links with an empty escaped fragment parameter so that the back end will serve back snippets of HTML.

1 <meta name="fragment" content="!" />

Other Advanced Routing Topics

Page Reloading

The $location service does not reload the entire page; it simply changes the URL. If we need to cause a full page reload, we have to set the location using the $window service:

1 $window.location.href = "/reload/page";

Async Location Changes

If we need to use the $location service outside of the scope life cycle, we have to use the $apply function to propagate the changes throughout the app. That’s because the $location service uses the $digest phase as the impetus to start the browser route change, which is how routing events work.

This includes in testing the $location service as this happens outside of the scope of the $digest loop cycle.

Dependency Injection

Dependency Injection

In general, there are only three ways an object can get a hold of its dependencies:

	We can create it internally to the dependent.

 	We can look it up or refer to it as a global variable.

 	We can pass it in where it’s needed.

With dependency injection, we’re tackling the third way (the other two present other difficult challenges, such as dirtying the global scope and making isolation nearly impossible). Dependency injection is a design pattern that allows for the removal of hard-coded dependencies, thus making it possible to remove or change them at run time.

This ability to modify dependencies at run time allows us to create isolated environments that are ideal for testing. We can replace real objects in production environments with mocked ones for testing environments.

Functionally, the pattern injects depended-upon resources into the destination when needed by automatically looking up the dependency in advance and providing the destination for the dependency.

As we write components dependent upon other objects or libraries, we will describe its dependencies. At run time, an injector will create instances of the dependencies and pass them along to the dependent consumer.

1 // Great example from the Angular docs
2 function SomeClass(greeter) {
3 this.greeter = greeter;
4 }
5 SomeClass.prototype.greetName = function(name) {
6 this.greeter.greet(name)
7 }

 	
 [image: information]
 	
 NOTE: It is never a good idea to create a controller on the global scope like we’ve done in the sample code above. We’re doing it only as an example for simplicity’s sake.

At run time, the SomeClass doesn’t care how it gets the greeter dependency, so long as it gets it. In order to get that greeter instance into SomeClass, the creater of SomeClass is responsible for passing the dependency to it when it’s created.

Angular uses the $injector for managing lookups and instantiation of dependencies for this reason. In fact, the $injector is responsible for handling all instantiations of our Angular components, including our app modules, directives, controllers, etc.

When any of our modules boot up at run time, the injector is responsible for actually instantiating the instance of the object and passing in any of its required dependencies.

For instance, this simple app declares a single module and a single controller, like so:

1 angular.module('myApp', [])
2 .controller('MyCtrl',
3 function($scope, greeter) {
4 $scope.sayHello = function() {
5 greeter.greet("Hello!");
6 };
7 });

At run time, when Angular instantiates the instance of our module, it looks up the greeter and simply passes it in naturally:

1 <div ng-app="myApp">
2 <div ng-controller="MyCtrl">
3 <button ng-click="sayHello()">Hello</button>
4 </div>
5 </div>

Behind the scenes, the Angular process looks like:

1 // Load the app with the injector
2 var injector = angular.injector(['myApp']);
3 // Load the controller
4 injector.instantiate(MyCtrl);

Nowhere in the above example did we describe how to find the greeter; it simply works, as the injector takes care of finding and loading it for us.

AngularJS uses an annotate function to pull properties off of the passed-in array during instantiation. You can view this function by typing the following in the Chrome developer tools:

1 > angular.injector().annotate(GithubCtrl);
2 ["$scope", "$http"]

In every Angular app, the $injector has been at work, whether we know it or not. When we write a controller without the [] bracket notation or through explicitly setting them, the $injector will infer the dependencies based on the name of the arguments.

Annotation by Inference

Angular assumes that the function parameter names are the names of the dependencies, if not otherwise specified. Thus, it will call toString() on the function, parse and extract the function arguments, and then use the $injector to inject these arguments into the instantiation of the object.

The injection process looks like:

1 $injector.invoke(function($scope, greeter) {});

Note that this process will only work with non-minified, non-obfuscated code, as Angular needs to parse the arguments intact.

With this JavaScript inference, order is not important: Angular will figure it out for us and inject the right properties in the “right” order.

 	
 [image: information]
 	
 JavaScript minifiers generally change function arguments to the minimum number of characters (along with changing white spaces, removing new lines and comments, etc.) so as to reduce the ultimate file size of the JavaScript files. If we do not explicitly describe the arguments, Angular will not be able to infer the arguments and thus the required injectable.

Explicit Annotation

Angular provides a method for us to explicitly define the dependencies that a function needs upon invocation. This method allows for minifiers to rename the function parameters and still be able to inject the proper services into the function.

The injection process uses the $inject property to annotation the function. The $inject property of a function is an array of service names to inject as dependencies.

To use the $inject property method, we set it on the function or name.

 1 var aCtrlFactory =
 2 function aCtrl($scope, greeter) {
 3 console.log("LOADED controller", greeter);
 4 // ... Controller
 5 };
 6 aCtrlFactory.$inject = ['$scope', 'greeter'];
 7 // Greeter service
 8 var greeterService = function() {
 9 console.log("greeter service");
10 }
11 // Our app controller
12 angular.module('myApp', [])
13 .controller('MyCtrl', aCtrlFactory)
14 .factory('greeter', greeterService);
15 // Grab the injector and create a new scope
16 var injector = angular.injector(['ng', 'myApp']),
17 controller = injector.get('$controller'),
18 rootScope = injector.get('$rootScope'),
19 newScope = rootScope.$new();
20 // Invoke the controller
21 controller('MyCtrl', {$scope: newScope});

With this annotation style, order is important, as the $inject array must match the ordering of the arguments to inject. This method of injection does work with minification, because the annotation information will be packaged with the function.

Inline Annotation

The last method of annotation that Angular provides out of the box is the inline annotation. This syntactic sugar works the same way as the $inject method of annotation from above, but allows us to make the arguments inline in the function definition. Additionally it affords us the ability to not use a temporary variable in the definition.

Inline annotation allows us to pass an array of arguments instead of a function when defining an Angular object. The elements inside this array are the list of injectable dependencies as strings, the last argument being the function definition of the object.

For instance:

1 angular.module('myApp')
2 .controller('MyCtrl', ['$scope', 'greeter',
3 function($scope, greeter) {
4
5 }]);

The inline annotation method works with minifiers, as we are passing a list of strings. We often refer this method as the bracket or array notation [].

$inject API

Although it’s relatively rare that we’ll need to work directly with the $injector, knowing about the API will give us some good insight into how exactly it works.

annotate()

The annotate() function returns an array of service names that are to be injected into the function when instantiated. The annotate() function is used by the injector to determine which services will be injected into the function at invocation time.

The annotate() function takes a single argument:

	fn (function or array)

The fn argument is either given a function or an array in the bracket notation of a function definition.

The annotate() method returns a single array of the names of services that will be injected into the function at the time of invocation.

1 angular.module('myApp')
2 .controller('MyCtrl', ['$scope', 'greeter',
3 function($scope, greeter) {
4 }]);
5 var injector = angular.injector(['myApp']);
6 // ['$scope', 'greeter']
7 injector.annotate('MyCtrl');

Try it in your Chrome Debugger.

get()

The get() method returns an instance of the service and takes a single argument.

	name (string)

The name argument is the name of the instance we want to get.

get() returns an instance of the service by name.

has()

The has() method returns true if the injector knows that a service exists in its registry and false if it does not. It takes a single argument:

	name (string)

The string is the name of the service we want to look up in the injector’s registry.

instantiate()

The instantiate() method creates a new instance of the JavaScript type. It takes a constructor and invokes the new operator with all of the arguments specified. It takes two arguments:

	Type (function)

This function is the annotation constructor function to invoke.

	locals (object – optional)

This optional argument provides another way to pass argument names into the function when it is invoked.

The instantiate() method returns a new instance of Type.

invoke()

The invoke() method invokes the method and adds the method arguments from the $injector.

This invoke() method takes three arguments:

	fn (function)

This function is the one to invoke. The arguments for the function are set with the function annotation.

	self (object – optional)

The self argument allows for us to set the this argument for the invoke method.

	locals (object – optional)

This optional argument provides another way to pass argument names into the function when it is invoked.

The invoke() method returns the return value by the fn function.

ngMin

With the three methods of defining annotations from above, it’s important to note that these options all exist when defining a function. In production, however, it is often less convenient to explicitly concern ourselves with order of arguments and code bloat.

The ngMin tool allows us to alleviate the responsibility to define our dependencies explicitly. ngMin is a pre-minifier for Angular apps. It walks through our Angular apps and sets up dependency injection for us.

For instance, it will turn this code:

1 angular.module('myApp', [])
2 .directive('myDirective',
3 function($http) {
4 })
5 .controller('IndexCtrl',
6 function($scope, $q) {
7 });

into the following:

 1 angular.module('myApp', [])
 2 .directive('myDirective', [
 3 '$http',
 4 function ($http) {
 5 }
 6]).controller('IndexCtrl', [
 7 '$scope',
 8 '$q',
 9 function ($scope, $q) {
10 }
11]);

ngMin saves us a lot of typing and cleans our source files significantly.

Installation

To install ngMin, we’ll use the npm package manager:

1 $ npm install -g ngmin

 	
 [image: information]
 	
 If we’re using Grunt, we can install the grunt-ngmin Grunt task. If we are using Rails, we can use the Ruby gem ngmin-rails.

Using ngMin

We can use ngMin in standalone mode at the CLI by passing two arguments: the input.js and the output.js files or via stdio/stdout, like so:

1 $ ngmin input.js output.js
2 # or
3 $ ngmin < input.js > output.js

where input.js is our source file and output.js is the annotated output file.

How It Works

At its core, ngMin uses an Abstract Syntax Tree (AST) as it walks through the JavaScript source. With the help of astral, an AST tooling framework, it rebuilds the source with the necessary annotations and then dumps the updated source using escodegen.

ngmin expects our Angular source code to consist of logical declarations. If our code uses syntax similar to the code used in this book, ngMin will be able to parse the source and pre-minify it.

Services

Services

Up until now, we’ve only concerned ourselves with how the view is tied to $scope and how the controller manages the data. For memory and performance purposes, controllers are instantiated only when they are needed and discarded when they are not. That means that every time we switch a route or reload a view, the current controller gets garbage collected.

Services provide a method for us to keep data around for the lifetime of the app and communicate across controllers in a consistent manner.

Services are singleton objects that are instantiated only once per app (by the $injector) and lazy loaded (created only when necessary). They provide an interface to keep together those methods that relate to a specific function.

$http, for instance, is an example of an AngularJS service. It provides low-level access to the browser’s XMLHttpRequest object. Rather than needing to dirty the application with low-level calls to the XMLHttpRequest object, we can simply interact with the $http API.

 1 // Example service that holds on to the
 2 // current_user for the lifetime of the app
 3 angular.module('myApp', [])
 4 .factory('UserService', function($http) {
 5 var current_user;
 6
 7 return {
 8 getCurrentUser: function() {
 9 return current_user;
10 },
11 setCurrentUser: function(user) {
12 current_user = user;
13 }
14 }
15 });

Angular comes with several built-in services with which we’ll interact consistently. It will also be useful to make our own services for any decently complex application.

AngularJS makes it very easy to create our own services: All we need to do is register the service. Once a service is registered, the Angular compiler can reference it and load it as a dependency for runtime use. In this manner, with the name registry makes it easy to isolate application dependencies for mocks and stubbing in our tests.

Registering a Service

There are several ways to create and register a service with the $injector; we’ll explore them later in this chapter.

The most common and flexible way to create a service uses the angular.module API factory:

1 angular.module('myApp.services', [])
2 .factory('githubService', function() {
3 var serviceInstance = {};
4 // Our first service
5 return serviceInstance;
6 });

Although this githubService doesn’t do anything very interesting, it is now registered with the AngularJS app using the name githubService as its name.

This service factory function is responsible for generating a single object or function that becomes this service, which will exist for the lifetime of the app. When our Angular app loads the service, the service will execute this function and hold on to the returned value as the singleton service object.

The service factory function can be either a function or an array, just like the way we create controllers:

1 // Creating the factory through using the
2 // bracket notation
3 angular.module('myApp.services', [])
4 .factory('githubService', [function($http) {
5 }]);

For instance, this githubService requires access to the $http service, so we’ll list the $http service as a dependency for Angular to inject into the function.

1 angular.module('myApp.services', [])
2 .factory('githubService', ['$http',
3 function($http) {
4 // Our serviceInstance now has access to
5 // the $http service in it's function definition
6 var serviceInstance = {};
7 return serviceInstance;
8 }]);

Now, anywhere that we need to access the GitHub API, we no longer need to call it through $http; we can call the githubService instead and let it handle the complexities of dealing with the remote service.

The GitHub API exposes the activity stream for the user on GitHub (this stream is simply a list of recent events that a user has logged on GitHub). In our service, we can create a method that accesses this API and exposes the resulting set to our API.

To expose a method on our service, we can place it as an attribute on the service object.

 1 angular.module('myApp.services', [])
 2 .factory('githubService', ['$http', function($http) {
 3 var githubUrl = 'https://api.github.com';
 4
 5 var runUserRequest = function(username, path) {
 6 // Return the promise from the $http service
 7 // that calls the Github API using JSONP
 8 return $http({
 9 method: 'JSONP',
10 url: githubUrl + '/users/' +
11 username + '/' +
12 path + '?callback=JSON_CALLBACK'
13 });
14 }
15 // Return the service object with a single function
16 // events
17 return {
18 events: function(username) {
19 return runUserRequest(username, 'events');
20 }
21 };
22 }]);

The githubService contains a single method that the components in our application can call.

Using Services

To use a service, we need to identify it as a dependency for the component where we’re using it: a controller, a directive, a filter, or another service. At run time, Angular will take care of instantiating it and resolving dependencies like normal.

To inject the service in the controller, we pass the name as an argument to the controller function. With the dependency listed in the controller, we can execute any of the methods we define on the service object.

1 angular.module('myApp', ['myApp.services'])
2 .controller('ServiceCtrl', ['$scope', 'githubService',
3 function($scope, githubService) {
4 // We can call the events function on the object
5 $scope.events =
6 githubService.events('auser');
7 }]);

With the new githubService injected into our ServiceController, it is now available for use just like any other service.

Let’s set up our example flow to call the GitHub API for a GitHub username that we define in our view. Just as we saw in the data binding section, we’ll bind the username property to the view.

 1 <div ng-controller="ServiceController">
 2 <label for="username">Type in a GitHub username</label>
 3 <input type="text"
 4 ng-model="username"
 5 placeholder="Enter a GitHub username" />
 6
 7 <li ng-repeat="event in events">
 8 <!--
 9 event.actor and event.repo are returned
10 by the github API. To view the raw
11 API, uncomment the next line:
12 -->
13 <!-- {{ event | json }} -->
14 {{ event.actor.login }} {{ event.repo.name }}
15
16
17 </div>

Now we can watch for the $scope.username property to react to how we’ve changed the view, based on our bi-directional data binding.

 1 .controller('ServiceCtrl', ['$scope', 'githubService',
 2 function($scope, githubService) {
 3 // Watch for changes on the username property.
 4 // If there is a change, run the function
 5 $scope.$watch('username', function(newUsername) {
 6 // uses the $http service to call the
 7 // GitHub API and returns the resulting promise
 8 githubService.events(newUsername)
 9 .success(function(data, status, headers) {
10 // the success function wraps
11 // the response in data
12 // so we need to call data.data to
13 // fetch the raw data
14 $scope.events = data.data;
15 })
16 });
17 }]);

 Since we are returning the $http promise, we can call the .success method on the return as though we are calling $http directly.

 Using $watch in the controller as above is not recommended. We’re using this example only for simplicity’s sake. In production, we would wrap this functionality into a directive and set the $watch function there instead.

In this example, you’ll notice that there is a delay before the input field changes. If we don’t include this delay, we’ll end up calling the GitHub API for every keystroke that is entered into the input, which is obviously not what we want.

To introduce this delay, we’re using the built-in $timeout service. To use the $timeout service, we inject it into our controller just like we injected the githubService into the controller:

1 app.controller('ServiceCtrl', [
2 '$scope', '$timeout', 'githubService',
3 function($scope, $timeout, githubService) {
4 }]);

 It’s conventional to inject any Angular services before our own custom services.

Now we can use the $timeout service in the controller. The $timeout service, in this case, cancels any network requests that would otherwise be running and gives us a 350 millisecond delay between changes in the input field. In other words, if there is a delay of 350 milliseconds between keyboard strokes, we’ll assume the user is done typing and we can start the GitHub request:

 1 app.controller('ServiceCtrl', [
 2 '$scope', '$timeout', 'githubService',
 3 function($scope, $timeout, githubService) {
 4 // The same example as above, plus
 5 // the $timeout service
 6 var timeout;
 7 $scope.$watch('username', function(newUserName) {
 8 if (newUserName) {
 9 // If there is a timeout already
10 // in progress
11 if (timeout) $timeout.cancel(timeout);
12 timeout = $timeout(function() {
13 githubService.events(newUserName)
14 .success(function(data, status) {
15 $scope.events = data.data;
16 });
17 }, 350);
18 }
19 });
20 }]);

Since we began this app, we’ve only looked at how services can bundle similar functionality together. Using services is also the canonical way to share data across several controllers.

For instance, if our application requires authentication from a back-end service, we might want to create a SessionsService that handles user authentication and holds onto a token passed by the back-end service. When any part of our application wants to make an authenticated request, it can use the SessionsService to get the access token.

If our application has a settings page where we set the user’s GitHub username, we’ll want to share the username with the other controllers in our application.

To share data across controllers, we need to add a method to our service that stores the username. Remember, the service is a singleton service that lives for the lifetime of the app, so we can store the username safely inside of it.

 1 angular.module('myApp.services', [])
 2 .factory('githubService', ['$http', function($http) {
 3 var githubUrl = 'https://api.github.com',
 4 githubUsername;
 5
 6 var runUserRequest = function(path) {
 7 // Return the promise from the $http service
 8 // that calls the Github API using JSONP
 9 return $http({
10 method: 'JSONP',
11 url: githubUrl + '/users/' +
12 githubUsername + '/' +
13 path + '?callback=JSON_CALLBACK'
14 });
15 }
16 // Return the service object with two methods
17 // events
18 // and setUsername
19 return {
20 events: function() {
21 return runUserRequest('events');
22 },
23 setUsername: function(username) {
24 githubUsername = username;
25 }
26 };
27 }]);

Now, we have a setUsername method in our service that enables us to set the username for the current GitHub user.

In any controller in our application, we can inject the githubService and call events() without concerning ourselves with whether or not we have the right username on our scope object.

1 angular.module('myApp', ['myApp.services'])
2 .controller('ServiceCtrl', ['$scope', 'githubService',
3 function($scope, githubService) {
4 $scope.setUsername =
5 }]);

Options for Creating Services

While the most common method for registering a service with our Angular app is through the factory() method, there are some other APIs we can take advantage of in certain situations to shorten our code.

The five different methods for creating services are:

	factory()

 	service()

 	constant()

 	value()

 	provider()

factory()

As we’ve seen, the factory() method is a quick way to create and configure a service.

The factory() function takes two arguments:

	name (string)

This argument takes the name of the service we want to register.

	getFn (function)

This function runs when Angular creates the service.

1 angular.module('myApp')
2 .factory('myService', function() {
3 return {
4 'username': 'auser'
5 }
6 });

The getFn will be invoked once for the duration of the app lifecycle, as the service is a singleton object. As with other Angular services, when we define our service, getFn can take an array or a function that will take other injectable objects.

The getFn function can return anything from a primitive value to a function to an object (similar to the value() function).

1 angular.module('myApp')
2 .factory('githubService', [
3 '$http', function($http) {
4 return {
5 getUserEvents: function(username) {
6 // ...
7 }
8 }
9 }]);

service()

If we want to register an instance of a service using a constructor function, we can use service(), which enables us to register a constructor function for our service object.

The service() method takes two arguments:

	name (string)

This argument takes the name of the service instance we want to register.

	constructor (function)

Here is the constructor function that we’ll call to instantiate the instance.

The service() function will instantiate the instance using the new keyword when creating the instance.

1 var Person = function($http) {
2 this.getName = function() {
3 return $http({
4 method: 'GET',
5 url: '/api/user'
6 });
7 };
8 };
9 angular.module('personService', Person);

provider

These factories are all created through the $provide service, which is responsible for instantiating these providers at run time.

A provider is an object with a $get() method. The $injector calls the $get method to create a new instance of the service. The $provider exposes several different API methods for creating a service, each with a different intended use.

At the root of all the methods for creating a service is the provider method. The provider() method is responsible for registering services in the $providerCache.

Technically, the factory() function is shorthand for creating a service through the provider() method wherein we assume that the $get() function is the function passed in.

The two method calls are functionally equivalent and will create the same service.

 1 angular.module('myApp')
 2 .factory('myService', function() {
 3 return {
 4 'username': 'auser'
 5 }
 6 })
 7 // This is equivalent to the
 8 // above use of factory
 9 .provider('myService', {
10 $get: function() {
11 return {
12 'username': 'auser'
13 }
14 }
15 });

Why would we ever need to use the .provider() method when we can just use the .factory() method?

The answer lies in whether we need the ability to externally configure a service returned by the .provider() method using the Angular .config() function (used as angular.module('myApp').config()). Unlike the other methods of service creation, we can inject a special attribute into the config() method.

Let’s say we want to configure our githubService with our URL in advance of the application starting up:

 1 // register the service using `.provider`
 2 angular.module('myApp', [])
 3 .provider('githubService', function($http) {
 4 // default, private state
 5 var githubUrl = 'https://github.com'
 6
 7 setGithubUrl: function(url) {
 8 // change default via .config
 9 if (url) { githubUrl = url }
10 }
11 method: JSONP, // override me, if you want
12
13 $get: function($http) {
14 self = this;
15 return $http({
16 method: self.method,
17 url: githubUrl +
18 '/events'
19 });
20 }
21 });

The idea here is that, by using the .provider() method, we have more flexibility when using our service in more than one app, when sharing our service across applications, or when sharing with the community.

With the example above, the provider() method creates an additional provider with the string ‘Provider’ appended to it that can be injected into the config() function.

1 angular.module('myApp', [])
2 .config(function(githubServiceProvider) {
3 githubServiceProvider
4 .setGithubUrl("git@github.com");
5 })

 If we want to be able to configure the service in the config() function, we must use provider() to define our service.

The provider() method registers a provider for a service. It takes two arguments:

	name (string)

The name argument is a string that we use as the key in the providerCache. This argument makes the name + Provider available as the provider for the service. The name will be used as the name of an instance of the service.

For instance, if we define a service as githubService, then the provider will be available as githubServiceProvider.

	aProvider (object/function/array)

The aProvider argument can take a few different forms:

If the aProvider argument is a function, then the function is called through dependency injection and is responsible for returning an object with the $get method.

If the aProvider argument is an array, then it’s treated just like a function with inline dependency injection annotation. It will expect the last argument to be a function that returns an object with the $get method.

If the aProvider argument is an object, then it is expected to have a $get method.

The provider() function returns an object that is a registered provider instance.

The most raw method of creating a service is by using the provider() API directly:

 1 // Example of creating a provider directly on the
 2 // module object.
 3 angular.module('myApp', [])
 4 .provider('UserService', {
 5 favoriteColor: null,
 6 setFavoriteColor: function(newColor) {
 7 this.favoriteColor = newColor;
 8 },
 9 // the $get function can take injectables
10 $get: function($http) {
11 return {
12 'name': 'Ari',
13 getFavoriteColor: function() {
14 return this.favoriteColor || 'unknown';
15 }
16 }
17 }
18 });

Creating a service in this way, we must return an object that has the $get() function defined; otherwise, it will result in an error.

We can instantiate it with the injector (although it’s unlikely that we’ll ever instantiate it directly, as Angular apps do it on their own – see under the hood):

 1 // Get the injector
 2 var injector = angular.module('myApp').injector();
 3 // Invoke our service
 4 injector.invoke(
 5 ['UserService', function(UserService) {
 6 // UserService returns
 7 // {
 8 // 'name': 'Ari',
 9 // getFavoriteColor: function() {}
10 // }
11 }]);

Using .provide() is very powerful and gives us the ability to use our services across our applications and the ability to share.

It is also important for us to know about the constant() and value() methods when creating services.

constant()

It’s possible to register an existing value as a service that we can later inject into other parts of our app as a service. For instance, let’s say we want to set an apiKey for a back-end service. We can store that constant value using constant().

The constant() function takes two arguments:

	name (string)

This argument is the name with which to register the constant.

	value (constant value)

This argument gives the value to register as the constant.

The constant() method returns a registered service instance.

1 angular.module('myApp')
2 .constant('apiKey', '123123123')

We can now inject this value into a configuration function just like any other service:

1 angular.module('myApp')
2 .controller('MyCtrl', [
3 '$scope', 'apiKey',
4 function($scope, apiKey) {
5 // We can use apiKey as a constant
6 // string as 123123123 set from above
7 $scope.apiKey = apiKey;
8 });

 	
 [image: information]
 	
 This is not interceptable by the decorator.

value()

If the return value of the $get method in our service is a constant, we don’t need to define a full-blown service with a more complex method. We can simply use the value() function to register the service.

The value() method accepts two arguments:

	name (string)

Once again, this argument gives the name with which we want to register the value.

	value (value)

We’ll return this value as the injectable instance.

The value() method returns a registered service instance for the name given.

1 angular.module('myApp')
2 .value('apiKey', '123123123');

When to Use Value or Constant

The major difference between the value() method and the constant() method is that you can inject a constant into a config function, whereas you cannot inject a value.

Conversely, with constants, we’re unable to register service objects or functions as the value.

Typically, a good rule of thumb is that we should use value() to register a service object or function, while we should use constant() for configuration data.

 1 angular.module('myApp', [])
 2 .constant('apiKey', '123123123')
 3 .config(function(apiKey) {
 4 // The apiKey here will resolve to 123123123
 5 // as we set above
 6 })
 7 .value('FBid', '231231231')
 8 .config(function(FBid) {
 9 // This will throw an error with
10 // Unknown provider: FBid
11 // because the value is not accessible by
12 });

decorator()

The $provide service gives us a way to intercept the service instance creation. Decorating our services enables us to extend services or replace them with something else entirely.

Decorators, themselves, are very powerful in that we can not only provide decorations for our own services, but we can intercept, interrupt, and even replace functionality in the core Angular services. In fact, a lot of the core Angular testing functionality is built using $provide.decorator().

Use cases for decorating services might include extending a service to cache external data requests to localStorage or wrapping a service in debugging or tracing wrappers for development purposes.

For instance, let’s say that we want to provide logging calls to our previously defined githubService. Rather than modifying the original service, we can decorate it using a decorator() function.

The decorator() function takes two arguments:

	name (string)

Here we pass the name of the service to decorate.

	decoratorFn (function)

We give the function that we’ll invoke at the time of service instantiation. The function is called with injector.invoke, which allows us to inject services into it.

In order to decorate a service, we need to inject the $delegate, which is the original service instance that we can decorate.

For instance, to add a decorator function to our above custom githubService to add a timestamp to every call, we can add a delegate function like the following:

 1 var githubDecorator = ['$delegate', '$log',
 2 function($delegate, $log) {
 3 var events = function(path) {
 4 var startedAt = new Date();
 5 var events = $delegate.events(path);
 6 var result = $delegate.locate();
 7 // Events is a promise
 8 events.always(function() {
 9 $log.info("Fetching events" +
10 " took " +
11 (new Date() - startedAt) + "ms");
12 });
13 return result;
14 }
15
16 return {
17 events: events
18 };
19 }];
20
21 angular.module('myApp')
22 .config(function($provide) {
23 $provide.decorator('githubService',
24 githubDecorator);
25 });

Communicating with the Outside World: XHR and Server-Side Communication

Communicating with the Outside World: XHR and Server-Side Communication

AngularJS web apps are entirely client-side applications. As we’ve seen, we can write AngularJS applications without integrating with a back end at all and still have a dynamic, responsive web app.

Without a back end, we are limited to only showing information that we have at load time. Angular provides us several methods if we want to integrate our AngularJS app with information from a remote server.

Using $http

We can directly call out using the built-in $http service. The $http service is simply a wrapper around the browser’s raw XMLHttpRequest object.

The $http service is a function that takes a single argument: a configuration object that is used to generate a HTTP request. The function returns a promise that has two helper methods: success and error.

 	
 [image: discussion]
 	
 See the $http config object section in this chapter for details on the available options.

The most basic usage of the method looks like:

 1 $http({
 2 method: 'GET',
 3 url: '/api/users.json'
 4 }).success(function(data, status, headers, config) {
 5 // This is called when the response is
 6 // ready
 7 }).error(function(data, status, headers, config) {
 8 // This is called when the response
 9 // comes back with an error status
10 });

Notice that the $http object looks like we are passing in a callback method to call when the response comes back. This observation is not accurate: The method actually returns a promise.

When this promise is returned, we can return the result of the $http method as a variable and chain other promises atop it to resolve when the HTTP has resolved.

We’ll use this technique quite often when we build services so that they can return a promise instead of requiring a callback.

1 var promise = $http({
2 method: 'GET',
3 url: '/api/users.json'
4 });

Since the $http method returns a promise object, we can use the then method to handle the callback when the response is ready. If we use the then method, we’ll get a special argument that represents the response object. Otherwise, we can use the success and error callbacks instead.

 1 promise.then(function(resp) {
 2 // resp is a response object
 3 });
 4 // OR we can use the success/error methods
 5 promise.success(function(data, status, headers, config) {
 6 // Handle successful responses
 7 });
 8 // error handling
 9 promise.error(function(data, status, headers, config) {
10 // Handle non-successful responses
11 });

If the response status code is between 200 and 299, the response is considered successful, and the success callback will be called. Otherwise, the error callback will be invoked.

 	
 [image: information]
 	
 Note that if the response results in a redirect, the XMLHttpRequest will follow it, and the error callback will not be called.

Note that we have the ability to use the then() method or the success() and error() methods on the HttpPromise. The difference between using the then() method and the convenience helpers is that the success() and error() functions contain a destructured representation of the response object, which the then() method receives in whole.

When we call the $http method, it won’t actually execute until the next $digest loop runs. Although most of the time we’ll be calling $http inside of an $apply block, we can also execute the method outside of the Angular digest loop.

To execute an $http function outside of the $digest loop, we need to wrap it in an $apply block. That will force the digest loop to run, and our promises will resolve as we expect them to.

1 $scope.$apply(function() {
2 $http({
3 method: 'GET',
4 url: '/api/users.json'
5 });
6 });

Shortcut Methods

The $http service also provides handy methods that allow us to shorten any method calls that don’t require more customization than a URL and a method name (or data with POST or PUT requests).

These shortcut methods allow us to modify the above $http GET call to:

1 // Shortened GET request
2 $http.get('/api/users.json');

get()

This method is the shortcut for sending a GET request.

The get() function accepts two parameters:

	url (string)

A relative or absolute URL specifying the destination of the request.

	config (optional object)

This object is an optional configuration object.

The get() method returns a HttpPromise object.

delete()

This method is the shortcut for sending a DELETE request.

The delete() function accepts two parameters:

	url (string)

This parameter gives a relative or absolute URL specifying the destination of the request.

	config (optional object)

This object is an optional configuration object.

The delete() method returns a HttpPromise object.

head()

This method is the shortcut for sending a HEAD request.

The head() function accepts two parameters:

	url (string)

This string is a relative or absolute URL specifying the destination of the request.

	config (optional object)

This object is an optional configuration object.

The head() method returns a HttpPromise object.

jsonp()

This method is the shortcut for sending a JSONP request.

The jsonp() function accepts two parameters:

	url (string)

This string is a relative or absolute URL specifying the destination of the request. In order to send the JSONP request, it must contain the string JSON_CALLBACK. For instance:

1 $http
2 .jsonp("/api/users.json?callback=JSON_CALLBACK");

	config (optional object)

This object is an optional configuration object.

The jsonp() method returns a HttpPromise object.

post()

This method is the shortcut for sending a POST request.

The post() function accepts three parameters:

	url (string)

This string is a relative or absolute URL specifying the destination of the request.

	data (object or string)

This object contains the request data content.

	config (optional object)

This object is an optional configuration object.

The post() method returns a HttpPromise object.

put()

This method is the shortcut for sending a PUT request.

The put() function accepts three parameters:

	url (string)

This string is a relative or absolute URL specifying the destination of the request.

	data (object or string)

This object contains the request data content.

	config (optional object)

This object is an optional configuration object.

The put() method returns a HttpPromise object.

Configuration Object

When we call the $http service as a method, we pass it a configuration object, which is used to describe how to craft the XMLHttpRequest object.

It can contain the following keys:

method (string)

This key is the HTTP method we use to make the request. It should be one of the following: ‘GET’, ‘DELETE’, ‘HEAD’, ‘JSONP’, ‘POST’, ‘PUT’.

url (string)

This string is the absolute or relative URL of the resource that is being requested.

params (map of strings/objects)

This key is the map of strings or objects that will be turned into the query string after the URL. If the value is not a string, it will be JSONified.

1 // Will params into ?name=ari
2 $http({
3 params: {"name": "ari"}
4 })

data (string/object)

This object contains the data that will be sent as the message data.

headers (object)

This object is the map of strings for functions that return strings representing HTTP headers to send with the request. If the return value of the function is null, the header will not be sent.

xsrfHeaderName (string)

This stringe is the name of the HTTP header to populate with the XSRF token.

xsrfCookieName (string)

This string contains the name of the cookie that holds the XSRF token.

transformRequest (function/array of functions)

This function or array of functions takes the HTTP request body and headers and returns their transformed versions. We generally use it to serialize data before it is sent to the server.

The function looks like:

1 function(data, headers)

transformResponse (function/array of functions)

This function or array of functions takes the HTTP response body and headers and returns their transformed versions. We generally use it to deserialize data after it has received returned data.

The function looks like:

1 function(data, headers)

cache (boolean/Cache object)

If this boolean value is true, then the default $http cache will cache the GET request. If it is a cache object built with $cacheFactory, then Angular will use this new cache to cache the response.

timeout (number/promise)

This key is a timeout in milliseconds or a promise that should abort the request when the promise is resolved.

withCredentials (boolean)

If this boolean value is true, then the withCredentials flag on the XHR request object will be set.

By default, CORS requests will not set any cookies. The withCredentials flag sets the Access-Control-Allow-Credentials header, which makes the request with any cookies from the remote domain in the request.

responseType (string)

The responseType option sets the XMLHttpRequestResponseType property on the request. It can be set to one of the different types of available HTTP response types:

	”” (string – default)

 	“arraybuffer” (ArrayBuffer)

 	“blob” (blob object)

 	“document” (HTTP document)

 	“json” (JSON object parsed from a JSON string)

 	“text” (string)

 	“moz-blob” (Firefox to receive progress events)

 	“moz-chunked-text” (streaming text)

 	“moz-chunked-arraybuffer” (streaming ArrayBuffer)

Response Object

The response object that Angular passes to the then() method contains four properties:

	data (string/object)

This data represents the transformed response body (if any transformations are defined).

	status (number)

This number is the HTTP status code of the response.

	headers (function)

This function is the header getter function that takes a single parameter to get the header value for the header name. For instance, to get the header of X-Auth-ID, we can call the function, like so:

1 $http({
2 method: 'GET',
3 url: '/api/users.json'
4 }).then(resp) {
5 // Fetch the X-Auth-ID
6 resp.headers('X-Auth-ID');
7 }

	config (object)

This object is the full, generated configuration object that was used to generate the original request.

Caching HTTP Requests

By default, the $http service does not cache requests in a local cache. We can enable caching per request by passing either a boolean or a cache instance in our $http requests.

1 $http.get('/api/users.json', { cache: true })
2 .success(function(data) {})
3 .error(function(data) {});

The first time that we send this $http request, the $http service will send a GET request to /api/users.json. The next time that we send this GET request, instead of making the HTTP GET request, it will pull the request out of the cache.

By passing true, for this particular request, Angular will use the default cache using the $cacheFactory, which Angular creates for us automatically at bootstrap time.

 	
 [image: information]
 	
 For more information on working directly with Angular caching, check out the caching chapter.

For more custom control of the cache that Angular uses, we can pass a custom cache instead of true in the request.

For instance, for a Least recently used (or LRU) cache, we pass the cache like so:

1 var lru = $cacheFactory('lru', {
2 capacity: 20
3 });
4 // $http request
5 $http.get('/api/users.json', { cache: lru })
6 .success(function(data) {})
7 .error(function(data) {});

Now, the latest 20 unique requests will be cached. The 21st most recent unique request will cause the least recently used request to be removed from the cache.

It gets a tad cumbersome to pass a custom cache every single time (even in a service). We can set a default cache for all $http requests across our application in the .config() function of our app:

1 angular.module('myApp')
2 .config(function($httpProvider, $cacheFactory) {
3 $httpProvider.defaults.cache =
4 $cacheFactory('lru', {
5 capacity: 20
6 });
7 });

Every single request will now use our custom LRU cache.

interceptors

Anytime that we want to provide global functionality on all of our requests, such as authentication, error handling, etc., it’s useful to be able to provide the ability to intercept all requests before they pass to the server and back from the server.

For instance, in authentication, if the server returns a response code with 401, we likely would want to kick the user out to a login page.

Angular provides a way for us to handle responses at the global level using interceptors.

Interceptors, although the term sounds scary, are basically middleware for the $http service that leverages the promise flow to handle injecting logic flow in the app.

At their core, interceptors are service factories (see services for more information about services) that we register through the $httpProvider by adding them to the $httpProvider.interceptors array.

There are four types of interceptors – two interceptors and two rejection interceptors:

	request

Angular calls the request interceptor with the $http config object. It can modify the config object or create a new one, and it is responsible for returning the updated config object or a promise that resolves a new config object.

	response

Angular calls the response interceptor with the $http response object. The function can modify the response or create a new one. It’s responsible for returning the response or a promise that resolves a new response object.

	requestError

Angular calls this interceptor when the previous request interceptor throws an error or is resolved with a rejection.

	responseError

We receive this error when the previous respone interceptor throws an error or is resolved with a rejection.

To create an interceptor, we use the .factory() method on our module and add one or more of the four methods to our service.

 1 angular.module('myApp')
 2 .factory('myInterceptor',
 3 function($q) {
 4 var interceptor = {
 5 'request': function(config) {
 6 // Successful request method
 7 return config; // or $q.when(config);
 8 },
 9 'response': function(response) {
10 // successful response
11 return response; // or $q.when(config);
12 },
13 'requestError': function(rejection) {
14 // an error happened on the request
15 // if we can recover from the error
16 // we can return a new request
17 // or promise
18 return response; // or new promise
19 // Otherwise, we can reject the next
20 // by returning a rejection
21 // return $q.reject(rejection);
22 },
23 'responseError': function(rejection) {
24 // an error happened on the request
25 // if we can recover from the error
26 // we can return a new response
27 // or promise
28 return rejection; // or new promise
29 // Otherwise, we can reject the next
30 // by returning a rejection
31 // return $q.reject(rejection);
32 }
33 };
34
35 return interceptor;
36 });

We then need to register our interceptor with the $httpProvider:

1 $httpProvider.interceptors.push('myInterceptor');

Configuring the $httpProvider

Using the .config() option, we can add certain HTTP headers to every request, which is useful when we want to send authentication headers alongside every request or set a response type, etc.

The default headers sent for every single request live in the $httpProvider.defaults.headers.common object. The common default headers are:

1 Accept: application/json, text/plain, * / *

We can change or augment these headers using our .config() function for every request, like so:

1 angular.module('myApp')
2 .config(function($httpProvider) {
3 $httpProvider.defaults.headers
4 .common['X-Requested-By'] = 'MyAngularApp';
5 });

We can also manipulate these defaults at run time using the defaults property of the $http object. For instance, to add a property for dynamic headers, we can set the header property like so:

1 $http.defaults
2 .common['X-Auth'] = "RandomString";

 	
 [image: information]
 	
 This functionality can be achieved by either using a request transformer or, for a single request, by setting the headers option in the $http request.

It’s also possible to manipulate the requests that are sent on only either POST or PUT requests.

The default headers that are sent for all POST requests are:

1 Content-Type: application/json

We can change or augment the POST headers in our config() function, like so:

1 angular.module('myApp')
2 .config(function($httpProvider) {
3 $httpProvider.defaults.headers
4 .post['X-Posted-By'] = 'MyAngularApp';
5 });

We can do the same for all PUT requests. The default headers sent for PUT requests are:

1 Content-Type: application/json

We can change or augment the PUT headers in our config() function, like so:

1 angular.module('myApp')
2 .config(function($httpProvider) {
3 $httpProvider.defaults.headers
4 .put['X-Posted-By'] = 'MyAngularApp';
5 });

Using $resource

Angular comes with another very handy optional service called the $resource service. This service creates a resource object that allows us to intelligently work with RESTful server-side data sources; it comes in handy when dealing with back ends that support the RESTful data model out of the box.

 	
 [image: information]
 	
 Representational state transfer, or REST for short, is a method of intelligently serving data from a back-end web service. For more information about REST, check out the Wikipedia article on it.

The $resource service is incredibly useful and will abstract away a lot of complexities that come with setting up a meaningful interaction with a back-end server, provided it supports the RESTful data model.

The $resource service allows us to turn our $http requests into simple methods like save or update. Rather than requiring us to be repetitive or to write tedious code, we can use the $resource method to handle it for us.

Installation

The ngResource module is an optional Angular module that adds support for interacting with RESTful back-end data sources. Since the ngResource module is not built into Angular by default, we need to install it and reference it inside of our app.

We can download it from code.angularjs.org and save it in a place that we can reference it from our HTML, like js/vendor/angular-resource.js.

We can also install it using Bower, which places it in our usual Bower directory. For more information about Bower, see the bower chapter.

1 $ bower install --save angular-resouce

We need to reference this module in our HTML after we reference Angular itself.

1 <script src="js/vendor/angular.js"></script>
2 <script src="js/vendor/angular-resource.js"></script>

Lastly, we need to reference the ngResource module as a dependency in our app module:

1 angular.module('myApp', ['ngResource']);

Now we’re ready to use the $resource service.

Using $resource

The $resource service itself is a factory that creates a resource object. The returned $resource object has methods that provide a high-level API to interact with back-end servers.

1 var User = $resource('/api/users/:userId.json',
2 {
3 userId: '@id'
4 }
5);

$resource returns a resource class object with a few methods for default actions. We can think of the User object as an interface to our RESTful back-end services.

This resource class object itself contains methods that allow us to interact indirectly with our back-end services.

By default, this object generates five methods that allow us to interact with a collection of resources or to generate an instance of a resource object. It creates two methods that are HTTP GET-based methods and three that are non-GET methods.

HTTP GET Methods

The two HTTP GET methods it creates expect the following three parameters:

	params (object)

These are the parameters that are sent with the request. They can be named parameters in the URL, or they can be query parameters.

	successFn (function)

This function is the callback function that will be called upon a successful HTTP response.

	errorFn (function)

This callback function is called upon a non-successful HTTP response.

get(params, successFn, errorFn)

The get method sends a GET request to the URL and expects a JSON response.

Without specifying a named parameter, such as above, the get() request is generally used to get a single resource.

1 // Issues a request to:
2 // GET /api/users
3 User.get(function(resp) {
4 // Handle successful response here
5 }, function(err) {
6 // Handle error here
7 });

If the named parameter is passed into the parameters (in our example, this parameter is id), then the get() method will send a request to the URL with the id in the URL:

1 // Issues a request to:
2 // GET /api/users/123
3 User.get({
4 id: '123'
5 }, function(resp) {
6 // Handle successful response here
7 }, function(err) {
8 // Handle error here
9 });

query(params, successFn, errorFn)

The query method sends a GET request to the URL and expects a collection of resource objects as a JSON response array.

1 // Issues a request to:
2 // GET /api/users
3 User.query(function(users) {
4 // The first user in the collection
5 var user = users[0];
6 });

The only major difference between the query() method and the get() method is that Angular expects the query() method to return an array.

HTTP Non-GET Methods

The three HTTP non-GET methods it creates expect the following four parameters:

	params (object)

These are the parameters that are sent with the request. They can be named parameters in the URL, or they can be query parameters.

	postData (object)

This object is the payload sent with the request.

	successFn (function)

This callback function is called upon a successful HTTP response.

	errorFn (function)

This callback function is called upon a non-successful HTTP response.

save(params, payload, successFn, errorFn)

The save method sends a POST request to the URL and uses the payload to generate the request body. The save() method is used to create a new resource on the server.

 1 // Issues a request to:
 2 // POST /api/users
 3 // with the body {name: 'Ari' }
 4 User.save({}, {
 5 name: 'Ari'
 6 }, function(response) {
 7 // Handle a successful response
 8 }, function(response) {
 9 // Handle a non-successful response
10 });

delete(params, payload, successFn, errorFn)

The delete method sends a DELETE request to the URL and can use the payload to generate the request body. It is used to remove an instance from the server.

1 // Issues a request to:
2 // DELETE /api/users
3 User.delete({}, {
4 id: '123'
5 }, function(response) {
6 // Handle a successful delete response
7 }, function(response) {
8 // Handle a non-successful delete response
9 });

remove(params, payload, successFn, errorFn)

The remove method is synonymous with the delete() method and primarily exists because delete is a reserved word in JavaScript that can cause problems when we use in Internet Explorer.

1 // Issues a request to:
2 // DELETE /api/users
3 User.remove({}, {
4 id: '123'
5 }, function(response) {
6 // Handle a successful remove response
7 }, function(response) {
8 // Handle a non-successful remove response
9 });

$resource instances

When the methods above return data, they wrap the response in a prototype class that adds convenience methods on the instances.

The three instance methods that are available on the instance objects are:

	$save()

 	$remove()

 	$delete()

These methods are the same as the resource counterpart except that they are called on a single resource instead of on a collection.

These three methods can be called on the instances themselves. For instance:

1 // Using the $save() instance methods
2 User.get({id: '123'}, function(user) {
3 user.name = 'Ari';
4 user.$save(); // Save the user
5 });
6 // This is equivalent to the collection-level
7 // resource call
8 User.save({id: '123'}, {name: 'Ari'});

$resource Instances Are Asynchronous

With all these methods, it’s important to note that when they are invoked, the $resource object immediately returns an empty reference to the data. This data is an empty reference, not the actual data, as all these methods are executed asynchronously.

Therefore, a call to get an instance might look synchronous, but is actually not. In fact, it’s simply a reference to data that Angular will fill in automatically when it arrives back from the server.

1 // $scope.user will be empty
2 $scope.user = User.get({id: '123'});

We can wait for the data to come back as expected using the callback method that the methods provide:

1 User.get({id: '123'}, function(user) {
2 $scope.user = user;
3 });

Additional Properties

The $resource collections and instances have two special properties that enable us to interact with the underlying resource definitions.

	$promise (promise)

The $promise property is the original promise that is created for the $resource. This property is particularly useful when using it in conjunction with the $routeProvider.when() resolve property.

If the request is successful, the promise is resolved with the resource instance or collection object. If the request is unsuccessful, then the promise is resolved with the HTTP response object, without the resource property.

	$resolved (boolean)

The $resolved property is a boolean that turns true upon the first server interaction (regardless of whether or not it’s successful).

Custom $resource Methods

Although the $resource service provides five methods, it is extensible enough for us to add our own custom methods to the resource object.

To create a custom method on our $resource class object, we can pass a third argument to the resource class that contains an object of a modified $http configuration object as methods.

The keys are the name of the method and the value is the $http configuration object.

 1 var User = $resource('/api/users/:userId.json',
 2 {
 3 userId: '@id'
 4 },
 5 {
 6 sendEmail: {
 7 method: 'POST'
 8 },
 9 allInboxes: {
10 method: 'JSONP',
11 isArray: true
12 }
13 }
14);

With this User resource, the methods sendEmail() and update() are now available on the collection (User resource object), as are the individual instances (as user.$sendEmail() and user.$update()).

$resource Configuration Object

The $resource configuration object is very similar to the $http configuration object (with a few changes).

The value of the object, the action is the name of the method on the resource object.

It can contain the following keys:

method (string)

method refers to the HTTP method we want to use to make the request. It should be one of the following: ‘GET’, ‘DELETE’, ‘JSONP’, ‘POST’, ‘PUT’.

url (string)

The action-specific url override for a the route of this method.

params (map of string/object)

This key contains the optional set of pre-bound parameters for this action. If any of the values are functions, they will be executed every time we need to fetch a parameter value for a request.

isArray (boolean)

If this isArray key is set to true, then the returned object for this action will be returned as an array.

transformRequest (function/array of functions)

This function or array of functions is a transform function that takes the HTTP request body and headers and returns their transformed versions. It is usually used for serialization.

 1 var User = $resource('/api/users/:id', {
 2 id: '@'
 3 }, {
 4 sendEmail: {
 5 method: 'PUT',
 6 transformRequest: function(data, headerFn) {
 7 // Return modified data for the request
 8 return JSON.stringify(data);
 9 }
10 }
11 });

transformResponse (function/array of functions)

This function or array of functions is a transform function that takes the HTTP request body and headers and returns their transformed versions. It is usually used for deserialization.

 1 var User = $resource('/api/users/:id', {
 2 id: '@'
 3 }, {
 4 sendEmail: {
 5 method: 'PUT',
 6 transformResponse: function(data, headerFn)
 7 {
 8 // Return modified data for the response
 9 return JSON.parse(data);
10 }
11 }
12 });

cache (boolean/cache)

If the cache property is set to true, then Angular will use the default $http cache to cache GET requests. If the cache property is set to an instance of a $cacheFactory object, then it will be used to cache GET requests.

If this property is set to false, then no caching will be applied to the $resource requests.

timeout (number/promise)

If timeout is set to a number, the timeout for this request will take that number of milliseconds. If it’s set to a promise, then it will abort the request when the promise is resolved.

withCredentials (boolean)

If this boolean value is true, then the withCredentials flag on the XHR request object will be set.

By default, CORS requests do not set any cookies. The withCredentials flag sets the Access-Control-Allow-Credentials header, which makes request containing any cookies from the remote domain in the request.

responseType (string)

The responseType option sets the XMLHttpRequestResponseType property on the request. We can set it to one of these different types of available HTTP response types:

	”” (string – default)

 	“arraybuffer” (ArrayBuffer)

 	“blob” (blob object)

 	“document” (HTTP document)

 	“json” (JSON object parsed from a JSON string)

 	“text” (string)

 	“moz-blob” (Firefox to receive progress events)

 	“moz-chunked-text” (streaming text)

 	“moz-chunked-arraybuffer” (streaming ArrayBuffer)

interceptor (object)

The interceptor property has two optional methods: either a response or a responseError. These interceptors are called with the $http response object, just like normal $http interceptors.

$resource Services

We can use the $resource as the basis for our own custom services. Building custom services gives us greater overall customization for our app and the ability to abstract the responsibility of communicating to remote services away from our controllers and views.

Finally, we highly recommend using $resource from inside a custom service object. Not only does it enable us to abstract away the responsibility of fetching remote services into a single, controllable Angular service, it also disconnects this logic from our controllers, enabling us to keep them clean. Additionally, it allows us to not worry about how we are getting data in our controllers.

This disconnection from inside Angular objects also helps to make testing a breeze, as we can stub and mock back-end calls without worrying about actually making the calls to our back end during tests.

To create a service that wraps $resource, we need to inject the $resource service into our service object and call the methods like normal.

For instance:

 1 angular.module('myApp', ['ngResource'])
 2 .factory('UserService', [
 3 '$resource', function($resource) {
 4
 5 return $resource('/api/users/:id', {
 6 id: '@'
 7 }, {
 8 update: {
 9 method: 'PUT'
10 }
11 });
12 }]);

$resource API

The $resource service is available through the use of the $resource() method. The method itself takes up to three parameters:

	url (string)

Here, we give the parametrized URL string template with all of the parameters that we need to use to identify the resource (prefixed by the : character). That is to say, for any parameters we pass in the URL, we can pass any named arguments in it.

1 $resource('/api/users/:id.:format', {
2 format: 'json',
3 id: '123'
4 })

Note that if the parameter before the suffix is empty (:id in our example above), then the URL will collapse into a single . character.

 	
 [image: information]
 	
 If we use a server that requires a port as part of the URL – for instance: http://localhost:3000 – we must escape the URL pattern using \\.
The URL pattern for this back end server would look similar to: $resource('http://localhost\\:3000/api/users/:id.json').

	paramDefaults (optional object)

The second parameter contains the default values for the URL parameters that will be sent with each request. The keys in the object match up with the named parameters. If we pass a key that is not set as a named parameter, then it is passed as a regular query parameter.

For instance, if the URL string passed has the signature of /api/users/:id and we set the default parameters to {id: '123', name: 'Ari' }, then the resulting URL becomes /api/users/123?name=Ari.

We can either pass a static value here, such as we’ve done above by hard coding it in the default parameter, OR we can set it to pull a dynamic parameter out of the data object.

To set a dynamic parameter, we only need to prefix the value with a '@' character.

	actions (optional object)

The actions object is a hash with declarations of custom actions that can extend the default set of resource actions.

The keys in the object are the names of the custom actions, while the values the $http configuration object.

For instance, we can declare a new update action on our resource like so:

1 $resource('/api/users/:id.:format', {
2 format: 'json',
3 id: '123'
4 }, {
5 update: {
6 method: 'PUT'
7 }
8 })

Using Restangular

Although Angular on its own is powerful enough to build standalone applications where we pack all important data inside the application, in doing so we would be missing out on one of the nicest features of the framework: its ability to talk with the outside world.

In this section, we’re going to talk specifically about an incredibly well-developed and well-thought-out library: Restangular.

The What and the Why

Restangular is an Angular service specifically designed simply to fetch data from the rest of the world.

Why not use $http or $resource? Although $http and $resource are built into the framework, they carry limitations with them. Restangular takes a completely different approach to XHR and makes it a pleasant experience.

The complete list of benefits to using Restangular is available on the Restangular README, but we’ll cover a few benefits here:

Promises

Using promises makes Restangular feel more Angular-esque, as it uses and resolves on promises. That enables us to chain together responses just as though we’re using the raw $http method.

Explicit

The Restangular library includes little to no magic. We don’t have to guess how it works or dig up documentation on how to use it.

All HTTP Methods

All HTTP methods are supported.

Forget URLs

While $resource requires us to specify the URLs we want to fetch, Restangular doesn’t require us to know the URLs in advance, nor do we have to specify them all upfront (other than the base URL).

Nested resources

If we want to use nested resources, there’s no need to create another instance of the Restangular instance; Restangular will handle it for us.

One resource, not many

Unlike $resource, we only ever need to create one instance of the Restangular resource object.

And there is much, much more.

Installation

Installing Restangular is easy – we have options. We can download the files manually (from GitHub) and include the file locally. If we download the file to our js/vendor directory, then we can include it in our HTML, like so:

1 <script type="test/javascript" src="js/vendor/restangular.min.js"></script>

We can include the JavaScript libraries hosted on jsDelivr in our page:

1 <script type="text/javascript" src="http://cdn.jsdelivr.net/restangular/latest/re\
2 stangular.js"></script>
3 <script type="text/javascript" src="http://cdn.jsdelivr.net/restangular/latest/re\
4 stangular.min.js"></script>

Alternatively, we can use npm to install Restangular if we’re using npm in our project:

1 $ npm install restangular

If we’ve set up Bower for our project, we can also choose to use Bower to install Restangular.

1 $ bower install restangular

Note: Restangular depends on either Lo-Dash or Underscore, so in order to support Restangular, we need to make sure we include one of the two.

We can either use jsDelivr to include lodash:

1 <script type="text/javascript"
2 src="//cdn.jsdelivr.net/lodash/2.1.0/lodash.compat.min.js">
3 </script>

Alternatively, we can download Lo-Dash here or use Bower to install it.

1 bower install --save lodash

We also need to include it as a script on the page:

1 <script type="text/javascript" src="/js/vendor/lodash/dist/lodash.min.js"></scrip\
2 t>

Just like any other AngularJS library, we need to include the restangular resource as a dependency for our app module object:

1 angular.module('myApp', ['restangular']);

Once we’ve done that, we’ll be able to inject the Restangular service into our Angular objects:

1 angular.module('myApp')
2 .factory('UserService',
3 ['Restangular',
4 function(Restangular) {
5 // Now we have access to the Restangular
6 // service our service
7 }]);

Intro to the Restangular Object

To use Restangular, there are two ways we can create an object to fetch services. We can either set the base route to fetch objects from:

1 var User = Restangular.all('users');

Doing so will set all HTTP requests that come from the Restangular service to pull from /users. For instance, calling getList() on the above object will fetch from /users:

1 var allUsers = User.getList(); // GET /users

It’s also possible to fetch nested requests for a single object. Instead of passing only a route, we can pass a unique ID to pull from as well:

1 var oneUser = Restangular.one('users', 'abc123');

This code will generate the request /users/abc123 when calling getList() on it.

1 oneUser.get().then(function(user) {
2 // GET /users/abc123/inboxes
3 user.getList('inboxes');
4 });

As you can see above, Restangular is smart enough to figure out how to construct URLs based upon the methods that we are calling on the Restangular source object. Sometimes, however, it is convenient to set the URL that we’re fetching, especially if our back end doesn’t support pure RESTful APIs.

To set the URL for a specific request, we can pass a separate argument using the allUrl method:

1 // All URLs on searches will use
2 // `http://google.com/` as the baseUrl
3 var searches =
4 Restangular.allUrl('one', 'http://google.com/');
5 // Will send a request to GET http://google.com/
6 searches.getList();

Additionally, we can set the base URL for one particular request, rather than manipulating the entire request using oneUrl:

1 var singleSearch =
2 Restangular.oneUrl('betaSearch', 'http://beta.google.com/1');
3
4 // Trigger a request to GET http://google.com/1
5 singleSearch.get();

Using Restangular

Now that we have a good handle on the Restangular object, we can get down to using it to make requests.

Once Restangular returns an initial object, we can use several different methods to interact with our back-end API.

Let’s say we’ve created a Restangular object that represents public discussions:

1 var messages = Restangular.all('messages');

With this object, we can get a list of all of the messages with the getList() method. This getList() method returns a collection containing methods we can call to work with the specific collection.

1 // allMessages is a promise that will resolve
2 // into the list of all messages
3 var allMessages = messages.getList();

We can also use the Restangular object to create messages. To create an object, we’ll use the post() method.

The post method requires a single object as a parameter and sends a (you guessed it) POST request to the URL we’ve specified. We can also add queryParameters and headers to this request.

1 // POST to /messages
2 var newMessage = {
3 body: "Hello world"
4 };
5 messages.post(newMessage);
6 // OR we can call this on an element
7 // to create a nested resource
8 var message = Restangular.one('messages', 'abc123');
9 message.post('replies', newMessage);

Because Restangular returns promises, we can then call methods on the returned data on promises so that we can run a function after the promise has completed. For instance, after we update a collection, we can then refresh the collection on our scope:

1 messages.post(newMessage).then(function(newMsg) {
2 $scope.messages = messages.getList();
3 }, function error(reason) {
4 // An error has occurred
5 });

We can also remove an object from the collection. Using the remove() method, we can send a DELETE HTTP request to our back end. To send a delete request, we can call the remove() method on an object inside the collection (an element).

1 var message = messages.get(123);
2 message.remove(); // Send a DELETE to /messages

Updating and saving objects is something we’ll do quite often. Traditionally, this operation is done with the HTTP method PUT. Restangular supports this functionality out of the box with the method put().

To update an object, we need to query the object, set our new attributes on the instance, and call put() on the object to save the updated attributes in the back end.

 Note that before modifying an object, it’s good practice to copy it and then modify the copied object before we save it. Restangular has its own version of copy such that it won’t rebind this in the bundled functions. It’s good practice to use Restangular.copy() when updating an object.

Now that we have experience working on instances of our collection, let’s dig into nested components. Nested components are those that live underneath other components. For instance, for all of the books written by a certain author.

Restangular supports nested resources by default. In fact, we can query a particular instance from our collection for their nested resources.

1 var author = Restangular.one('users', 'abc123');
2 // Builds a GET to /authors/abc123/books
3 var books = author.getList('books');

But What About My HTTP Methods?

Restangular supports, out of the box, all HTTP methods. It can support calling GET, PUT, POST, DELETE, HEAD, TRACE, OPTIONS, and PATCH.

1 author.get(); // GET /authors/abc123
2 author.getList('books'); // GET /authors/abc123/books
3 author.put(); // PUT /authors/abc123
4 author.post(); // POST /authors/abc123
5 author.remove(); // DELETE /authors/abc123
6 author.head(); // HEAD /authors/abc123
7 author.trace(); // TRACE /authors/abc123
8 author.options(); // OPTIONS /authors/abc123
9 author.patch(); // PATCH /author/abc123

Restangular also makes it possible to create custom HTTP methods for cases when our back-end server maps resources differently than we expect.

For instance, if we want to get the author’s biography (not a RESTful resource), we can set the URL through the customMETHOD() function (where METHOD is replaced by any of the following: GET, GETLIST, DELETE, POST, PUT, HEAD, OPTIONS, PATCH, TRACE).

 1 // Maps to GET /users/abc123/biography
 2 author.customGET("biography");
 3 // Or customPOST with a new bio object
 4 // as {body: "Ari's bio"}
 5 // The two empty fields in between are the
 6 // params field and any custom headers
 7 author.customPOST({body: "Ari's Bio"}, // post body
 8 "biography", // route
 9 {}, // custom params
10 {}); // custom headers

Custom Query Parameters and Headers

We can send custom query parameters or custom headers with each of these methods.

To add custom query parameters, we need to add a JavaScript object as the second parameter to our method call. We can also add a second JavaScript object as a third parameter. Most all of the individual methods that we can call on an element take these two parameters as optional parameters.

With custom query parameters, a post method might look something like:

1 var queryParamObj = { role: 'admin' },
2 headerObj = { 'x-user': 'admin' };
3
4 messages.getList('accounts', queryParamObj, headerObj);

Restangular is incredibly simple to use and gets out of the way so that we can focus on building our app, rather than wrestling with the API.

Configuring Restangular

Restangular is highly configurable and expects us to configure it for our apps. It does come with defaults for every single property, so we don’t have to configure it if we don’t need to do so.

There are a few different places where we can configure a Restangular service. We can configure it globally or using a custom service.

To configure Restangular for all Restangular usages, regardless of the location it’s used in, we can inject the RestangularProvider in a config() function or inject Restangular in a run() function.

 A good rule of thumb to determine where we should configure our Restangular instances: If we need to use any other service in configuring Restangular, then we should configure it in the run() method, otherwise we’ll keep it in the config() method.

Setting the baseUrl

To set the baseUrl for all calls to our backendAPI, we can use the setBaseUrl() method. For instance, if our API is located at /api/v1, rather than at the root of our server.

1 angular.module('myApp')
2 .config(function(RestangularProvider) {
3 RestangularProvider.setBaseUrl('/api/v1');
4 });

Adding Element Transformations

We can add any element transformations after Restangular has loaded an element.

Using these elementTransformers, we can add custom methods to our Restangular objects, such as when the object instance was fetched, for example.

This method will be called as a callback that will enable us to update or modify the element we fetched after it’s been loaded, but before we use it in our Angular objects.

 1 angular.module('myApp')
 2 .config(function(RestangularProvider) {
 3 // Three parameters:
 4 // the route
 5 // if it's a collection - boolean (true/false)
 6 // and the transformer
 7 RestangularProvider.addElementTransformer('authors',
 8 false, function(element) {
 9 element.fetchedAt = new Date();
10 return element;
11 });
12 });

Setting responseInterceptors

Restangular can set responseInterceptors. responseInterceptors are useful for when we want to translate the response we get back from the server. For instance, if our server comes back with the data tucked away in a nested object, we can use a responseInterceptor to dig it out.

This responseInterceptor is called after every response we get back from the back end. It is called with the following parameters:

	data - data retrieved from the server

 	operation - the HTTP method used

 	what - the model that’s requested

 	url - the relative URL that’s being requested

 	response - the full server response, including headers

 	deferred - the promise for the request

 1 angular.module('myApp')
 2 .config(function(RestangularProvider) {
 3 RestangularProvider.setResponseInterceptor(
 4 function(data, operation, what) {
 5 if (operation == 'getList') {
 6 return data[what];
 7 }
 8 return data;
 9 });
10 });

Using requestInterceptors

Restangular supports the other side of the operation, as well: We can work with the data we are going to send to the server before we ever actually send any data back to the server in the first place.

requestInterceptors are useful for times when we need to run manipulations on the object before sending it to the server. For instance, we can’t call directly to MongoDB with an _id field, so we have to remove it before it is sent to the back end if we’re in a PUT operation.

To set a requestInterceptor, we can use the method setRequestInterceptor(). The setRequestInterceptor() method is called with the following parameters:

	element - the element we’re sending to the server

 	operation - the HTTP method used

 	what - the model that’s being requested

 	url - the relative URL that’s being requested

 1 angular.module('myApp')
 2 .config(function(RestangularProvider) {
 3 RestangularProvider.setRequestInterceptor(
 4 function(elem, operation, what) {
 5 if (operation === 'put') {
 6 elem._id = undefined;
 7 return elem;
 8 }
 9 return elem;
10 });
11 });

Custom Fields

Restangular also supports setting custom Restangular fields, which is important for times when we are connecting not to a back-end server, but to a back-end database, such as MongoDB, where the id field doesn’t map to an id. When connecting to MongoDB, the id field actually maps to _id.$oid.

1 angular.module('myApp')
2 .config(function(RestangularProvider) {
3 RestangularProvider.setRestangularFields({
4 id: '_id.$oid'
5 });
6 });
7 });

Catching Errors with errorInterceptors

It’s also possible to set errorInterceptors for those times when we want to catch an error from within Restangular. Using the errorInterceptor gives us the ability to halt the flow of the error down to our app.

If we return false from the errorInterceptor, the flow of the promise ends, and our app will never need to deal with handling errors.

It would be a good time to handle dealing with authentication failures at this point, for instance. If any request comes back with a 401, we can use the errorInterceptor to catch it and handle redirecting the user to the login page.

1 angular.module('myApp')
2 .config(function(RestangularProvider) {
3 RestangularProvider.setErrorInterceptor(
4 function(resp) {
5 displayError();
6 return false; // stop the promise chain
7 });
8 });
9 });

Setting Parentless

If we’re fetching a resource that is not nested underneath other nested resources, we can use the setParentless configuration property field to tell Restangular not to build the nested URL structure.

1 angular.module('myApp')
2 .config(function(RestangularProvider) {
3 RestangularProvider.setParentless([
4 'cars'
5]);
6 });

The setParentless() configuration function can take two different types of parameters:

boolean

If this parameter is set to true, all resources are considered ‘parentless’, and no URL is nested.

array

Only the resources identified by the string in this array will be considered parentless.

Custom Restangular Services

Finally, we highly recommend using Restangular from inside a custom service object. Doing so is particularly useful, as we can configure Restangular on a per-service level using a service as well as disconnecting the logic to talk to our back end from within our controllers/directives and enabling our services to handle talking to them directly.

This disconnection from inside Angular objects also helps with making testing a breeze as we can stub and mock back-end calls without worrying about actually making the calls to our back end during tests.

To create a service that wraps Restangular, we simply need to inject the Restangular service into our factory and call the methods like normal. Inside this factory, we can create custom configurations by using the withConfig() function.

For instance:

 1 angular.module('myApp', ['restangular'])
 2 .factory('MessageService', [
 3 'Restangular', function(Restangular) {
 4 var restAngular =
 5 Restangular.withConfig(function(Configurer) {
 6 Configurer.setBaseUrl('/api/v2/messages');
 7 });
 8
 9 var _messageService = restAngular.all('messages');
10
11 return {
12 getMessages: function() {
13 return _messageService.getList();
14 }
15 }
16 }]);

XHR in Practice

XHR in Practice

Cross-Origin and Same-Origin Policy

Web browsers nearly universally prevent web pages from fetching and executing scripts on foreign domains.

The same-origin policy specifically permits scripts to run on pages that originate from the same site. Our browser identifies a page with the same origin by comparing the scheme, hostname, and port number of both pages. There are heavy run restrictions on any other interactions with scripts originating from off-site.

The Cross Origin Resource Sharing (or CORS, for short) is often a source of headaches for fetching data over XHR and dealing with foreign sources.

Fortunately, there are several ways for us to get data that is exposed by external data sources into our app. We’ll look at two of these methods and mention a third (that requires a bit more backend support):

	JSONP

 	CORS

 	Server proxies

JSONP

JSONP is a way to get past the browser security issues that are present when we’re trying to request data from a foreign domain. In order to work with JSONP, the server must be able to support the method.

JSONP works by issuing a GET request using a <script> tag, instead of using XHR requests. The JSONP technique creates a <script> tag and places it in the DOM. When it shows up in the DOM, the browser takes over and requests the script referenced in the src tag.

When the server returns the request, it surrounds the response with a JavaScript function invocation that corresponds to a request about which our JavaScript knows.

Angular provides a helper for JSONP requests using the $http service. The jsonp method of request through the $http service looks like:

1 $http
2 .jsonp("https://api.github.com?callback=JSON_CALLBACK")
3 .success(function(data) {
4 // Data
5 });

When we make this call, Angular places a <script> tag on the DOM that might look something like:

1 <script src="https://api.github.com?callback=angular.callbacks._0"
2 type="text/javascript"></script>

Notice that Angular has replaced the JSON_CALLBACK with a custom function that Angular creates specifically for this request.

When the data comes back from the JSONP-enabled server, it is wrapped in the function angular.callbacks._0.

In this case, the GitHub server will return some JSON wrapped in the callback, and its response might look like:

 1 // shortened for brevity
 2 angular.callbacks._0({
 3 "meta": {
 4 "X-RateLimit-Limit": "60",
 5 "status": 200,
 6 },
 7 "data": {
 8 "current_user_url": "https://api.github.com/user"
 9 }
10 })

When Angular calls the special function, it resolves the $http promise.

 	
 [image: discussion]
 	
 When we write our own back-end servers to support JSONP, we need to ensure that, when we respond, we wrap the data inside the function given by the request with callback.

When using JSONP, we need to be aware of the potential security risks. First, we’re opening up our server to allow a back-end server to call any JavaScript in our app.

A foreign site that we do not control can change its script at any time (or a malicious cracker could), exposing our site for vulnerabilities. The server or a middleman could potentially send extra JavaScript logic back into our page that could expose private user data.

We can only use JSONP to send GET requests, since we’re setting a GET request in the <script> tag. Additionally, it’s tough to manage errors on a script tag. We should use JSONP sparingly and only with servers we trust and control.

Using CORS

In recent years, the W3C has created the CORS specification, or Cross Origin Resource Sharing policy, to replace the JSONP hack in a standard way.

The CORS specification is simply an extension to the standard XMLHttpRequest object which allows JavaScript to make cross-domain XHR calls. It does so by preflighting a request to the server to effectively ask for permission to send the request.

This preflight gives the receiving server the ability to accept or reject any request from all servers, a select server, or set of servers. That means that both the client app and the server app need to coordinate to provide data to the client server.

The W3C wrote the CORS specification with the intention of abstracting away many of the details from the client-side developer so that it appears as though the request is made in the same way as a same-origin request.

Configuration

To use CORS within Angular, we need to tell Angular that we’re using CORS. We use the .config() method on our Angular app module to set two options.

First, we need to tell Angular to use the XDomain, and we must remove the X-Requested-With header from all of our requests.

 	
 [image: information]
 	
 The X-Requested-With header has been removed from the common header defaults, but it’s a good idea to ensure it’s been removed anyway.

1 angular.module('myApp')
2 .config(function($httpProvider) {
3 $httpProvider.defaults.useXDomain = true;
4 delete $httpProvider.defaults.headers
5 .common['X-Requested-With'];
6 });

Now we’re ready to make CORS requests.

Server CORS Requirements

Although we will not dive into server-side CORS setup in this chapter (we do in the server communication chapter), it’s important that the server we’re working with support CORS.

A server supporting CORS must respond to requests with several access control headers:

	Access-Control-Allow-Origin

The value of this header must either echo the origin request header or be a * to allow any and all requests from any origin.

	Access-Control-Allow-Credentials (optional)

By default, CORS requests are not made with cookies. If the server includes this header, then we can send cookies along with our request by setting the withCredentials option to true.

If we set the withCredentials option in our $http request to true, but the server does not respond with this header, then the request will fail and vice versa.

The back-end server must also be able to handle OPTIONS request methods.

There are two types of CORS requests: simple and non-simple.

Simple Requests

Requests are simple if they match one of these HTTP methods:

	HEAD

 	GET

 	POST

and if they are made with one or many of the following HTTP headers, and no others:

	Accept

 	Accept-Language

 	Content-Language

 	Last-Event-ID

 	Content-Type
 	application/x-www-form-urlencoded

 	multipart/form-data

 	text/plain

We categorize these as simple requests because the browser can make these types of requests without the use of CORS. Simple requests do NOT require any special type of communication between the server and the client.

A simple CORS request using the $http service looks like any other request:

1 $http
2 .get("https://api.github.com")
3 .success(function(data) {
4 // Data
5 });

Non-Simple Requests

Non-simple requests are those that violate the requirements for the simple requests. If we want to support PUT or DELETE methods, or if we want to set the specific type of content type in our requests, then we’re going to call a non-simple request.

Although, as client-side developers, this request doesn’t look any different to us, the browser handles the request differently.

The browser actually sends two requests: the preflight and the request. First, the browser issues a preflight request wherein the server requests permission to make the request. If the permissions have been granted, then the browser can make the actual request.

The browser takes care of handling the CORS request transparently.

Similar to the simple request, the browser will add the Origin header to both of the requests (preflight and the actual request).

Preflight Request

The browser makes the preflight request as an OPTIONS request. It contains a few headers in the request:

	Access-Control-Request-Method

This header is the HTTP method of the actual request. It is always included in the request.

	Access-Control-Request-Headers (optional)

This header is a comma-delimited list of non-simple headers that are included in the request.

The server should accept the request, then we must check if the HTTP method and the headers are valid. If they are, the server should respond with the following headers:

	Access-Control-Allow-Origin

The value of this header must either echo the origin request header or be a * to allow any and all requests from any origin.

	Access-Control-Allow-Methods

This list of allowed HTTP methods is helpful, as we can cache the request in the client, and we don’t have to constantly ask for preflights in future requests.

	Access-Control-Allow-Headers

If the Access-Control-Request-Headers header is set, then the server should respond with this header.

We expect the server to respond with a 200 response status code if the request is acceptable. If it is, then the second request will be made.

 	
 [image: information]
 	
 CORS is not a security mechanism; it is simply a standard that modern browsers implement. It’s still our responsibility to set up security in our app.

Non-simple requests look exactly like regular requests inside Angular:

1 $http
2 .delete("https://api.github.com/api/users/1")
3 .success(function(data) {
4 // Data
5 });

Server-Side Proxies

The simplest method for making requests to any server, however, is to simply use a back-end server on the same domain (or on a remote server with CORS setup) as a proxy for remote resources.

Rather than making requests to foreign resources through our client-side app, we can simply use our own local server to make and respond to requests for our client-side app.

In this way, we enable older browsers to make requests (only modern browsers implement CORS), without requiring a second request for non-simple CORS requests, and we can use standard browser-level security as it was intended to be used.

In order to use a server-side proxy, we need to set up a local server to handle our requests, which takes care of sending the actual requests.

For more information about setting up a server-side component, read the Server communication chapter.

Working with JSON

JSON, or JavaScript Object Notation, is a data-interchange format that looks a lot like a JavaScript object. In fact, it resolves to one when JavaScript loads it, and Angular will resolve any requests that respond with a JavaScript object in JSON format to a corresponding object for our Angular app.

For instance, if our server returns the following JSON:

1 [
2 {"msg": "This is the first msg", state: 1},
3 {"msg": "This is the second msg", state: 2},
4 {"msg": "This is the third msg", state: 1},
5 {"msg": "This is the fourth msg", state: 3}
6]

When our Angular app receives this data over $http, we can simply reference the data as a JavaScript object:

1 $http.get('/v1/messages.json')
2 .success(function(data, status) {
3 $scope.first_msg = data[0].msg;
4 $scope.first_state = data[0].state;
5 });

Working with XML

Although Angular transparently handles JSON objects handed back from the server, we can handle other data types as well.

For instance, if our server hands us back XML instead of JSON, we need to massage the data into a JavaScript object.

Luckily, there are some great open-source libraries available, as well as some built-in browser parsers that parse XML into JavaScript objects for us.

For the moment, we’ll use the X2JS library, a fantastic open-source library available here.

First, we need to make sure we install the X2JS library. Let’s use Bower to install the library for us:

1 $ bower install x2js

and then reference the library from the googlecode.com or from our Bower components:

1 <script type="text/javascript" src="https://x2js.googlecode.com/hg/xml2json.js"><\
2 /script>
3 <!-- OR -->
4 <script type="text/javascript" src="bower_components/xml2json/xml2json.js"></scri\
5 pt>

Starting off with our lightweight XML parser, we create a factory that simply parses the XML in the DOM for us.

1 angular.factory('xmlParser', function() {
2 var x2js = new X2JS();
3 return {
4 xml2json: x2js.xml2json,
5 json2xml: x2js.json2xml_str
6 }
7 });

With this lightweight parsing factory, we can create a transformResponse to parse our XML within our $http requests, such as:

1 angular.factory('Data', [$http, 'xmlParser',
2 function($http, xmlParser) {
3 $http.get('/api/msgs.xml', {
4 transformResponse:
5 function(data) {
6 return xmlParser.xml2json(data);
7 }
8 })
9 });

Now, our response will come back as a JSON object, and we can use the response just as though the server returned JSON.

Authentication with AngularJS

In most serious web applications, there are usually protected resources that we want to keep secret from the general public and to which we want to give access only to authenticated users whom we know and trust. These resources can be anything from paid material to administration ability.

Regardless of what we are protecting, the methods that we can use to protect our resources will be similar.

Describing how to implement server-side authentication is out of scope of this section; instead, we’ll focus on describing what our server-side back end needs to do to feature our front-end view.

Then we’ll dive right into discussing how to provide client-side authentication protection and discuss potential edge cases for the process.

Server-Side Requirements

First and foremost, we must take the time to secure our server-side API. As we are dealing with uncompiled code being sent by a potentially untrusted source, we cannot count on all of our users to be genuine.

There are generally two ways we can handle securing our client-side app:

Server-Side Rendered Views

If we’re serving our site through a server-side server that controls all of the HTML, we can use traditional authentication methods and only send the HTML that our client side needs and that the server authenticates.

Pure Client-Side Authentication

If we want to be able to build our client-side and server-side as different components and allow the deployment of these components to be naturally separated in production deployment. We’ll need to secure our client-side authentication using the server-side API, but not reliant on it’s authentication.

We’re going to implement client-side authentication through token authentication. Our server side needs to be able to provide our client app with an auth token.

The token itself should be a random string of numbers and letters that the server side can associate to a particular user session.

 	
 [image: information]
 	
 uuid libraries are generally good candidates for generating tokens.

That is, when a user logs into our site, instead of sending a user ID or using any identifiable information, our server side generates a random token and creates an association between the user session and this token.

We expect to send the token with every single client-side request so that we can look up the user by this random string of characters on each one.

Our server side then needs to send the proper status codes for the particular events that we get back, denoting whether or not they are valid, so that our client side can react.

For instance, for all unauthenticated requests, we want our server side to send back a 401 response status code.

The following table is a short list of response status codes that we’ll deal with in this section:

 	Code
 	Meaning

 	200
 	Everything is good

 	401
 	Unauthenticated request

 	403
 	Forbidden request

 	404
 	Page not found

 	500
 	Server error

When we encounter these status codes, our app reacts accordingly.

The data flow looks like:

	Unauthenticated user visits our site.
2a. The user tries to access a protected resource and is redirected to the login page.
2b. The user visits the login page manually.

 	The user enters his or her login ID (username or email) and password, and our Angular app makes a POST request to our server with the user’s data.

 	Our server looks at the login ID and password and determines whether they are a match.
5a. If the login ID matches the password, the server generates a unique token and sends it back alongside the request and a 200 response code.
5b. If the login ID does not match the password, the server responds to the request with a status code of 401.

For an authenticated user (someone who passes along the 5a request path above):

	The user requests a protected resource path (such as his or her own account page).
2a. If the user has not yet logged in, our app redirects the user to the login page.
2b. If the user is logged in, our app makes a request using the unique user token for the session.

 	The server validates this token and returns the appropriate data based on the request.

Client-Side Authentication

In the section above, we’ve outlined a few behaviors that our authentication scheme needs to handle:

	Redirect on unauthorized page requests

 	Capture non-200 responses and act accordingly on any XHR request

 	Keep track of the user throughout the page session

To handle redirection on unauthorized page requests, such as when an unauthorized user tries to access a protected resource, we need to determine how to define a protected resource vs. a public one.

There are several ways to handle defining routes as public vs. non-public.

Protected Resources from API

If we’re protecting routes that need to operate on protected API calls (i.e., making a protected resource API call to which the server can respond with a 401 response code) in order to load the page, then we can simply rely on $http interceptors to handle the work for us.

To create an $http interceptor that is responsible for responding to unauthenticated API requests, we need to create one that handles responses.

Let’s set up our $http response interceptor inside of a .config() block inside our app where we inject the $httpProvider:

1 angular.module('myApp', [])
2 .config(function($httpProvider) {
3 // Build our interceptor here
4 });

This interceptor handles both responses and responseErrors and will be called on all requests.

 1 angular.module('myApp', [])
 2 .config(function($httpProvider) {
 3 // Build our interceptor here
 4 var interceptor =
 5 function($q, $rootScope, Auth) {
 6 return {
 7 'response': function(resp) {
 8 if (resp.config.url == '/api/login') {
 9 // Assuming our API server response
10 // with the following data:
11 // { token: "AUTH_TOKEN" }
12 Auth.setToken(resp.data.token);
13 }
14 },
15 'responseError': function(rejection) {
16 // Handle errors
17 switch(rejection.status) {
18 case 401:
19 if (rejection.config.url!=='api/login')
20 // If we're not on the login page
21 $rootScope
22 .$broadcast('auth:loginRequired');
23 break;
24
25 case 403:
26 $rootScope
27 .$broadcast('auth:forbidden');
28 break;
29
30 case 404:
31 $rootScope
32 .$broadcast('page:notFound');
33 break;
34
35 case 500:
36 $rootScope
37 .$broadcast('server:error');
38 break;
39 }
40
41 return $q.reject(rejection);
42 }
43 }
44 }
45 });

This auth interceptor handles a few of the server-side response codes that we can possibly receive from our server on any given request. When the response interceptor takes a 401 response, it $broadcasts an event down the app from the $rootScope so that any child scope (all scopes) can handle the event.

Additionally, this interceptor saves the token for any successful 200 request to our /api/login login route.

To actually implement this interceptor for our requests, we need to tell the $httpProvider to include it in its interceptor chain:

 1 angular.module('myApp', [])
 2 .config(function($httpProvider) {
 3 // Build our interceptor here
 4 var interceptor =
 5 function($q, $rootScope, Auth) {
 6 // ...
 7 }
 8 // Integrate the interceptor in the
 9 // request/response chain for $http
10 $httpProvider
11 .interceptors.push(interceptor);
12 });

 	
 [image: information]
 	
 For more information on $http interceptors, check out the $http interceptors section.

Protected Resources by Route Definition

If we always want paths protected and/or if no API calls are being made that need to protect the route, then we need to monitor our routes and ensure that we have a logged-in user for the routes we are interested in protecting.

In order to monitor our routes, we must set up an event listener on the $routeChangeStart event. This event fires when the route properties start to resolve, but before we’ve actually changed the route.

 	
 [image: information]
 	
 Combined with the previous method, this approach is more secure. If we don’t check for status code, our users can still make requests.

Let’s set our listener to focus on this event and check to see if the route itself is defined to be exposed to the current user.

First, we must define some access roles for our application. We can do so by setting a constant in our app such that we can check against these roles on each route.

1 angular.module('myApp', ['ngRoute'])
2 .constant('ACCESS_LEVELS', {
3 pub: 1,
4 user: 2
5 });

By setting the ACCESS_LEVELS as a constant, we can inject it into both .config() and .run() blocks and can use it throughout our application.

Now, let’s use these constants to define access levels for each of our defined routes:

 1 angular.module('myApp', ['ngRoute'])
 2 .config(function($routeProvider, ACCESS_LEVELS) {
 3 $routeProvider
 4 .when('/', {
 5 controller: 'MainCtrl',
 6 templateUrl: 'views/main.html',
 7 access_level: ACCESS_LEVELS.pub
 8 })
 9 .when('/account', {
10 controller: 'AccountCtrl',
11 templateUrl: 'views/account.html',
12 access_level: ACCESS_LEVELS.user
13 })
14 .otherwise({
15 redirectTo: '/'
16 })
17 });

Each of the routes above defines its own access_level, which we can check to confirm that the current user is authorized (if necessary) and is of an appropriate user level to access the route.

At this point, there will be a user with one of two states:

	Unauthenticated anonymous user

 	Authenticated known user

To authenticate a user, we need to create a service that holds onto the existing user level. We must also let our service work with the local browser cookie store so we can expect that, when logged in, our user will remain logged in while the session is still good.

This small service simply includes some helper functions on top of the user object:

 1 angular.module('myApp.services', [])
 2 .factory('Auth',
 3 function($cookieStore, ACCESS_LEVELS) {
 4 var _user = $cookieStore.get('user');
 5
 6 var setUser = function(user) {
 7 if (!user.role || user.role < 0) {
 8 user.role = ACCESS_LEVELS.pub;
 9 }
10 _user = user;
11 $cookieStore.put('user', _user);
12 }
13
14 return {
15 isAuthorized: function(lvl) {
16 return _user.role >= lvl;
17 },
18 setUser: setUser,
19 isLoggedIn: function() {
20 return _user ? true : false;
21 },
22 getUser: function() {
23 return _user;
24 },
25 getId: function() {
26 return _user ? _user._id : null;
27 },
28 getToken: function() {
29 return _user ? _user.token : '';
30 },
31 logout: function() {
32 $cookieStore.remove('user');
33 _user = null;
34 }
35 }
36 });

Now, if our user is authenticated and logged in, we can check on our $routeChangeStart event.

 1 angular.module('myApp')
 2 .run(function($rootScope, $location, Auth) {
 3 // Set a watch on the $routeChangeStart
 4 $rootScope.$on('$routeChangeStart',
 5 function(evt, next, curr) {
 6
 7 if (!Auth.isAuthorized(next.access_level)) {
 8 if (Auth.isLoggedIn()) {
 9 // The user is logged in, but does not
10 // have permissions to view the view
11 $location.path('/');
12 } else {
13 $location.path('/login');
14 }
15 }
16 })
17 });

Talking to MongoDB

If we don’t have a custom back end, it’s also possible to talk directly to a database that exposes a RESTful interface.

Instead of having to build a back end, we can talk directly to Mongo.

 	
 [image: information]
 	
 In this example, we’re using MongoLab, a SAAS service that offers managed MongoDB instances.

In order to talk to MongoDB, we need to set up a few custom configurations for our Restangular objects.

 	
 [image: information]
 	
 Note that these configurations will change the global Restangular objects. If we want to nest this configuration for a single database, then we’ll need to create a factory to nest the custom Restangular object.

First, let’s set our API key. Since this key won’t change across the entire app, we suggest creating it as a constant.

1 angular.module('myApp', ['restangular'])
2 .constant('apiKey', 'YOUR_API_KEY');

We can now inject this API key into other parts of our application. We’ll set up our configuration in the config() block on our module.

Using MongoLab, we’ll set our baseUrl to the API endpoint:

1 // ...
2 .config(function(RestangularProvider, apiKey) {
3 RestangularProvider
4 .setBaseUrl('https://api.mongolab.com/api/1/databases/YOURDB/collections');
5 });

Next, every single request we make to our back-end database will require our API key. Restangular makes it easy to add it using the setDefaultRequestParams() method:

1 // ...
2 .config(function(RestangularProvider, apiKey) {
3 // ...
4 RestangularProvider
5 .setDefaultRequestParams({
6 apiKey: apiKey
7 });
8 });

Next, we need to update the Restangular field to map the custom ID field, provided by MongoDB as _id.$oid, to the Restangular id field. This update is simple if we use the setRestangularFields() function:

1 // ...
2 .config(function(RestangularProvider, apiKey) {
3 // ...
4 RestangularProvider.setRestangularFields({
5 id: '_id.$oid'
6 });
7 });

Lastly, we need to overwrite the _id field set by mongo when we’re updating a record. Mongo won’t let us ‘rewrite’ the _id field, so we can use Restangular to ‘fake’ setting the field. Since Restangular will call the route to update the element, we don’t need to worry about the possibility of the object not being rewritten.

1 // ...
2 .config(function(RestangularProvider, apiKey) {
3 // ...
4 RestangularProvider.setRestangularFields({
5 id: '_id.$oid'
6 });
7 });

For the sake of completeness, here is the entire config block:

 1 angular.module('myApp', ['restangular'])
 2 .constant('apiKey', 'API_KEY')
 3 .config(function(RestangularProvider, apiKey) {
 4 RestangularProvider.setBaseUrl(
 5 'https://api.mongolab.com/api/1/databases/YOURDB/collections');
 6 RestangularProvider.setDefaultRequestParams({
 7 apiKey: apiKey
 8 })
 9 RestangularProvider.setRestangularFields({
10 id: '_id.$oid'
11 });
12
13 RestangularProvider.setRequestInterceptor(
14 function(elem, operation, what) {
15
16 if (operation === 'put') {
17 elem._id = undefined;
18 return elem;
19 }
20 return elem;
21 })
22 });

Promises

Promises

Angular’s event system (which we discuss in depth in the under the hood chapter) provides a lot of power to our Angular apps. One of the most powerful features it gives us is the automatic resolution of promises.

What’s a Promise?

A promise is a method of resolving a value (or not) in an asynchronous manner. Promises are objects that represent the return value or thrown exception that a function may eventually provide. Promises are incredibly useful in dealing with remote objects, and we can think of them as a proxy for our remote objects.

Traditionally, JavaScript uses closures, or callbacks, to respond with meaningful data that is not available synchronously, such as XHR requests after a page has loaded. Rather than depending upon a callback to fire, we can interact with the data as though it has already returned.

Callbacks have worked for a long time, but the developer suffers when using them. Callbacks provide no consistency and no guaranteed call, they steal code flow when depending upon other callbacks, and they generally make debugging incredibly difficult. At every step of the way, we have to deal with explicitly handling errors.

Instead of firing and hoping to get a callback run when executing asynchronous methods, promises offer a different abstraction: They return a promise object.

For example, in traditional callback code, we might have a method that sends a message from one user to one of the user’s friends.

 1 // Sample callback code
 2 User.get(fromId, {
 3 success: function(err, user) {
 4 if (err) return {error: err};
 5 user.friends.find(toId, function(err, friend) {
 6 if (err) return {error: err};
 7 user.sendMessage(friend, message, callback);
 8 });
 9 },
10 failure: function(err) {
11 return {error: err}
12 }
13 });

This callback pyramid is already getting out of hand, and we haven’t included any robust error-handling code, either. Additionally, we need to know the order in which the arguments are called from within our callback.

The promised-based version of the previous code might look somewhat closer to:

 1 User.get(fromId)
 2 .then(function(user) {
 3 return user.friends.find(toId);
 4 }, function(err) {
 5 // We couldn't find the user
 6 })
 7 .then(function(friend) {
 8 return user.sendMessage(friend, message);
 9 }, function(err) {
10 // The user's friend resulted in an error
11 })
12 .then(function(success) {
13 // user was sent the message
14 }, function(err) {
15 // An error occurred
16 });

Not only is this code more readable; it is also much easier to grok. We can guarantee that the callback will resolve to a single value, rather than having to deal with the callback interface.

Notice that in the first example we have to handle errors differently from how we handle non-errors, and we’d need to make sure that using callbacks to handle errors will all need to implement the same API (usually with (err, data) being the usual method signature).

In the second example, we handle the success and error in the same way. Our resultant object will receive the error in the usual manner. The promise API is specific about resolving or rejecting promises, so we also don’t have to worry about our methods implementing a different method signature.

Why Promises?

Escaping from callback hell is just one by-product of using promises. The real point of promises is to make asynchronous functions look more like synchronous ones. With synchronous functions, we can capture both return values and exception values as expected.

We can capture errors at any point of the process and bypass future code that relies upon the error of that process. We achieve all of these things without thinking about the benefits of this synchronous code – it’s simply in the nature of the code.

Thus, the point of using promises is to regain the ability to do functional composition and error bubbling while maintaining the ability of the code to run asynchronously.

Promises are first-class objects and carry with them a few guarantees:

	Only one resolve or reject will ever be called
 	resolve will be called with a single fulfillment value

 	reject will only be called with a single rejection reason

 	If the promise has been resolved or rejected, any handlers depending upon them will still be called

 	Handlers will always be called asynchronously

Additionally, we can chain promises and allow the code to process as it would normally run. Exceptions from one promise bubble up through the entire promise chain.

They are always asynchronous, so we can use them in the flow of our code without worry that they will block the rest of the app.

Promises in Angular

Angular’s event loop gives Angular the unique ability to resolve promises in its $rootScope.$evalAsync stage (see under the hood for more detail on the run loop). The promises will sit inert until the $digest run loop finishes.

This fact allows for Angular to turn the results of a promise into the view without any extra work. It also enables us to assign the result of an XHR call directly to a property on a $scope object and think nothing of it.

Let’s build an example that will return a list of open pull requests for AngularJS from GitHub.

 Play with it

1 <h1>Open Pull Requests for Angular JS</h1>
2
3 <ul ng-controller="DashboardController">
4 <li ng-repeat="pr in pullRequests">
5 {{ pr.title }}
6
7

If we have a service that returns a promise (covered in depth in the services chapter), we can simply place the promise in the view and expect that Angular will resolve it for us:

 1 angular.module('myApp', [])
 2 .controller('DashboardCtrl', [
 3 '$scope', 'UserService',
 4 function($scope, UserService) {
 5 // UserService's getFriends() method
 6 // returns a promise
 7 User.getFriends(123)
 8 .then(function(data) {
 9 $scope.friends = data.data;
10 });
11 }]);

Note that the default setting in Angular is no longer automatically unwrapped promises. We can re-enable this form if we really want to by setting the option to true in a .config() function:

1 .config(function($parseProvider) {
2 $parseProvider.unwrapPromises(true) ;
3 });

When the asynchronous call to getPullRequests returns, the $scope.pullRequests value will automatically update the view.

How to Create a Promise

In order to create a promise in Angular, we can use the built-in $q service. The $q service provides a few methods in its deferred API.

First, we need to inject the $q service into the object where we want to use it.

1 angular.module('myApp', [])
2 .factory('GithubService', ['$q', function($q) {
3 // Now we have access to the $q library
4 }]);

To create a deferred object, we call the method defer():

1 var deferred = $q.defer();

The deferred object exposes three methods and the single promise property that we can use to deal with the promise.

	resolve(value)

The resolve function resolves the deferred promise with the value.

1 deferred.resolve({name: "Ari", username: "@auser"});

	reject(reason)

This method rejects the deferred promise with a reason. It is equivalent to resolving a promise with a rejection.

1 deferred.reject("Can't update user");
2 // Equivalent to
3 deferred.resolve($q.reject("Can't update user"));

	notify(value)

This method responds with the status of a promises execution.

For example, if we want to return a status from the promise, we can use the notify() function to deliver it.

Let’s say that we have several long-running requests that we want to make from a single promise. We can call the notify function to send back a notification of progress:

 1 .factory('GithubService', function($q, $http) {
 2 // get events from repo
 3 var getEventsFromRepo = function() {
 4 // task
 5 }
 6 var service = {
 7 makeMultipleRequests: function(repos) {
 8 var d = $q.defer(),
 9 percentComplete = 0,
10 output = [];
11 for (var i = 0; i < repos.length; i++) {
12 output.push(getEventsFromRepo(repos[i]));
13 percentComplete = (i+1)/repos.length * 100;
14 d.notify(percentComplete);
15 }
16
17 d.resolve(output);
18
19 return d.promise;
20 }
21 }
22 return service;
23 });

With this makeMultipleRequests() function on our GithubService object, we will receive a progress notification every time a repo has been fetched and processed.

We can use this notification in our usage of the promise by adding a third function call to the promise usage. For instance:

 1 .controller('HomeCtrl',
 2 function($scope, GithubService) {
 3 GithubService.makeMultipleRequests([
 4 'auser/beehive', 'angular/angular.js'
 5])
 6 .then(function(result) {
 7 // Handle the result
 8 }, function(err) {
 9 // Error occurred
10 }, function(percentComplete) {
11 $scope.progress = percentComplete;
12 });
13 });

We can access the promise as a property on the deferred object:

1 deferred.promise

A full example of how to create a function that responds with a promise might look similar to the following method on the GithubService, as mentioned above.

 1 angular.module('myApp', [])
 2 .factory('GithubService', [
 3 '$q', '$http',
 4 function($q, $http) {
 5 var getPullRequests = function() {
 6 var deferred = $q.defer();
 7 // Get list of open angular js pull requests from github
 8 $http.get('https://api.github.com/repos/angular/angular.js/pulls')
 9 .success(function(data) {
10 deferred.resolve(data);
11 })
12 .error(function(reason) {
13 deferred.reject(reason);
14 })
15 return deferred.promise;
16 }
17
18 return { // return factory object
19 getPullRequests: getPullRequests
20 };
21 }]);

Now we can use the promise API to interact with the getPullRequests() promise.

 View full example

In the case of the service above, we can interact with the promise in two different ways:

	then(successFn, errFn, notifyFn)

Regardless of the success or failure of the promise, then calls either the successFn or the errFn asynchronously as soon as the result is available. The method always calls callbacks with a single argument: the result or the rejection reason.

It may call the notifyFn callback zero or more times to provide a progress status indication before the promise is resolved or rejected.

The then() method always returns a new promise, which is either resolved or rejected through the return value of the successFn or the errFn. It also serves notifications through the notifyFn.

	catch(errFn)

This method is simply a helper function that allows for us to replace the err callback with .catch(function(reason) {}):

1 $http.get('/user/' + id + '/friends')
2 .catch(function(reason) {
3 deferred.reject(reason);
4 });

	finally(callback)

The finally method allows us to observe the fulfillment or rejection of a promise without modifying the resulting value. The method is useful for when we need to release a resource or run some clean-up, regardless of the success or error of the promise.

We cannot call this method directly, as finally is a reserved word in IE JavaScript. To use finally, we have to call it like so:

1 promise['finally'](function() {});

Angular’s $q deferred objects are chainable in that even then returns a promise. As soon as the promise is resolved, the promise that then returns is resolved or rejected.

 	
 [image: information]
 	
 These promise chains are how Angular can support $http’s interceptors.

The $q service is similar to the original Kris Kowal’s Q library:

	$q is integrated with the Angular $rootScope model, so resolutions and rejections happen quickly inside of Angular.

 	$q promises are integrated with Angular’s templating engine, which means that any promises found in the views will be resolved or rejected in the view.

 	$q is tiny and doesn’t contain the full functionality of the Q library.

Chaining Requests

The then method returns a new derived promise after the initial promise is resolved. This return gives us the unique ability to attach yet another then on the result of the initial then method.

 1 // A service that responds with a promise
 2 GithubService.then(function(data) {
 3 var events = [];
 4 for (var i = 0; i < data.length; i++) {
 5 events.push(data[i].events);
 6 }
 7 return events;
 8 }).then(function(events) {
 9 $scope.events = events;
10 });

In this example, we can create a chain of execution that allows us to interrupt the flow of the application based upon more functionality, which we can attach to different results.

This interruption allows us to pause or defer resolutions of promises at any point during the chain of execution.

 	
 [image: information]
 	
 This interruption is also how the $http service implements request and response interceptors.

The $q library comes with several different useful methods:

all(promises)

If we have multiple promises that we want to combine into a single promise, we can use the $q.all(promises) method to combine them all into a single promise. This single method takes a single argument:

	promises (array or object of promises)

Promises as an array or hash of promises

The all() method returns a single promise that will resolve with an array or a hash of values. Each value will correspond to the promises at the same index or key in the promises hash. If any of the promises are resolved with a rejection, then the resulting promise will be rejected as well.

defer()

The defer() method creates a deferred object. It takes no parameters, and it returns a new instance of a single deferred object.

reject(reason)

This method creates a promise that is resolved with a rejection for a specific reason. It is specifically designed to give us access to forwarding rejection in a chain of promises, which is akin to throw in JavaScript. In the same sense that we can catch an exception in JavaScript and we can forward the rejection, we need to rethrow the error. We can do so with $q.reject(reason).

This method takes a single parameter:

	reason (constant, string, exception, object)

The reasons for the rejection

The reject() method returns a promise that has already been resolved with a rejection and the reason for the rejection.

when(value)

The when() function wraps an object that might be a value then-able promise into a $q promise. Doing that allows for us to deal with an object that may or may not be a promise.

The when() function takes a single parameter:

	value

The value or a promise

The when() function returns a promise that we can then use like any other promise.

Server Communication

Server Communication

One of the most powerful components of Angular is its ability to communicate with a server-side back end. Regardless of the back end that we’re using, Angular can likely talk to it through an API.

In this chapter, we’re going to focus on two types of back ends: custom server-side back ends that we’ll develop and server-less back ends using back ends as a service.

Custom Server-Side

In this section, we’re going to focus on the process of building a custom server-side application in NodeJS. Although we’re going to focus on building this server app in Node, we can build our back end in any server-side language that supports HTTP API routes.

 	
 [image: information]
 	
 If you’re a Ruby on Rails developer, we’ve written a book specifically on demonstrating how to use Rails. Check out Riding Rails with AngularJS.

To start our Node-backed app, we need to have NodeJS installed.

Install NodeJS

NodeJS is a server-side platform built on the Chrome JavaScript run time. It is an event-driven, non-blocking, lightweight JavaScript run time that enables us to write JavaScript on the server.

To install NodeJS, we can head to nodejs.org and click on the big Install button. It will detect and download the appropriate installer for our platform.

i> If for some reason it downloads the wrong package, no problem – we can click on the Downloads button and manually select the appropriate package.

We can run the installer and let it run its course. Once it’s complete, we’ll have the two packages available on the command line:

	node

 	npm

node is the Node binary that we’ll call to run our Node app, while npm is the Node Package Manager, which we’ll use to install Node libraries.

Install Express

We’re going to use a web application framework called expressjs that will give us some syntactic sugar around dealing with HTTP. It allows us to only work with the functionality of our web app, as opposed to needing to deal with the nitty gritty details of Node’s HTTP server.

Its features are extensive and include providing a clean routing syntax, dynamic middleware, and tons of open-source packages built specifically for Express. Additionally, many well-known companies use it in production.

To install Express, we’ll use the npm binary:

1 $ npm install -g express

i> We use the -g flag to install the package globally. We can omit it if we don’t want to install it globally, whereupon it will be installed in the directory node_modules/ within the current directory. We recommend installing it globally, however.

Now, we can use the Express generator to generate our Express app.

1 $ express myApp

This line generates a very basic Express app with a set of requirements and a loosely opinionated directory structure.

 [image: Running the Express generator]Running the Express generator

To run our app, we need to install our basic dependencies locally using npm again. This time, we’ll use it to install the dependencies set in the package.json locally.

1 $ cd myApp && npm install -d

 	
 [image: information]
 	
 The -d flag tells npm to install the dependencies locally. This syntax is overly explicit: We can leave the -d off, as it’s set to install dependencies locally by default.

Now, let’s run the app to make sure everything is working as we expect it should. We can do this simply by running it with the node binary:

1 $ node app.js

 [image: Running Express]Running Express

If we open the URL http://localhost:3000 in our web browser, the default page of our Express app shows us that the app has been generated.

Every time we make a change to our app.js file, we need to stop that server and restart it. When in development, this process can be cumbersome, so we suggest using the nodemon server instead of node.js.

To install nodemon, we’ll use npm again:

1 $ npm install --save-dev nodemon

 	
 [image: information]
 	
 The --save-dev flag tells npm to save the package in the devDependencies section of package.json. We recommend using this practice because it helps when introducing multiple developers to a team: We can ensure that the whole team has the right dependencies for the codebase.

Instead of using node app.js to start the app, we can replace it with:

1 $ nodemon app.js

Every time that we make a change to the app.js file and save it, nodemon restarts our Node app automatically.

The app starts out in app.js. There are two important components to notice in the app.js file: the static path from which static files are served and the routes that are resolved (and how).

1 // ...
2 app.use(express.methodOverride());
3 app.use(app.router);
4 // Line 1
5 app.use(express.static(path.join(__dirname, 'public')));
6 // ...
7 app.get('/', routes.index);
8 app.get('/users', user.list);
9 // ...

The first line, with the express.static() call, tells Node to look in the public/ directory for any files it may find that match the requested route. For instance, if the requested route is ‘/users’, it would look for a file called ‘users’.

The second set of lines (app.get()) matches the routes for the cases that static files are not matched in the public/ directory.

To work with our Angular app, we need to make two modifications to the generated app.js:

First, we swap the lines of the express.static() and the app.router line, like so:

1 // ...
2 app.use(express.methodOverride());
3 // Moved this line above the next line
4 app.use(express.static(path.join(__dirname, 'public')));
5 app.use(app.router);
6 // ...

Although this swap is not strictly necessary, it will help support HTML5Mode later and will tell Express to prefer the files in the public/ directory above those defined in our app.

Second, we remove the line pointing to the '/' route:

1 // ...
2 // app.get('/', routes.index); // remove this line
3 app.get('/users', users.list);
4 // ...

Now we can write our Angular app like normal inside of our public directory.

Calling APIs

Our local Node server now serves our app, so we can call our own APIs, which we’ll develop inside of our Express server.

For instance, let’s develop an application that records the number of times a user hits a specific button. We need to write two routes:

GET /hits

This route returns our total list of hits to the button.

POST /hit

This route records a new hit to the button and return us the latest total number of hits.

First, let’s build the basic view of our app’s index.html page. We’ll place this in the public/ directory of our Node app so that if the route requested is either / or /index.html, Express will serve this file as our route:

 1 <!doctype html>
 2 <html lang="en" ng-app="myApp">
 3 <head>
 4 <title>Node app</title>
 5 <link rel="stylesheet" href="stylesheets/style.css">
 6 <script src="bower_components/angular/angular.min.js"></script>
 7 </head>
 8 <body>
 9 <div ng-controller="HomeCtrl">
10 <h3>Button hits: {{ hits }}</h3>
11 <button ng-click="registerHit()">
12 HIT ME, if you dare
13 </button>
14 </div>
15 <script src="javascripts/services.js"></script>
16 <script src="javascripts/app.js"></script>
17 </body>
18 </html>

Inside of our public/javacscripts/app.js file, we’ll add a controller on top of our myApp Angular module:

 1 angular.module('myApp', [
 2 'ngRoute',
 3 'myApp.services'
 4])
 5 .controller('HomeCtrl', function($scope, HitService) {
 6 HitService.count()
 7 .then(function(data) {
 8 $scope.hits = data;
 9 });
10
11 $scope.registerHit = function() {
12 HitService.registerHit()
13 .then(function(data) {
14 $scope.hits = data;
15 });
16 }
17 });

We’ll build an Angular service that is responsible for calling these routes, as we can see in the controller above:

 1 angular.module('myApp.services', [])
 2 .factory('HitService', function($q, $http) {
 3 var service = {
 4 count: function() {
 5 var d = $q.defer();
 6 $http.get('/hits')
 7 .success(function(data, status) {
 8 d.resolve(data.hits);
 9 }).error(function(data, status) {
10 d.reject(data);
11 });
12 return d.promise;
13 },
14 registerHit: function() {
15 var d = $q.defer();
16 $http.post('/hit', {})
17 .success(function(data, status) {
18 d.resolve(data.hits);
19 }).error(function(data, status) {
20 d.reject(data);
21 });
22 return d.promise;
23 }
24 }
25 return service;
26 });

For more information on services, check out the services chapter.

This service exposes two methods that call the routes that we defined above:

	count

 	registerHit

Inside our Node app’s app.js file, we need to register two new routes and create the functionality that defines the routes for us.

These two new Node routes match the service routes that we’re calling above:

1 // ...
2 var hits = require('./routes/hits');
3 // ...
4 app.get('/hits', hits.count);
5 app.post('/hit', hits.registerNew);
6 // ...

The only component left is building the actual back-end, server-side logic that registers the hit count.

In NodeJS, each required module exposes methods through the method exports. To expose the two methods count and registerNew (from above), we need to attach them to the exports object inside the routes/hits.js file.

Inside of our routes/hits.js file, we create a hits store that stores the number of hits in memory, so that if we restart the server, the number of hits will also reset.

 1 /*
 2 * HIT service
 3 */
 4 var hits = 0;
 5 exports.count = function(req, res){
 6 res.send(200, {
 7 hits: hits
 8 });
 9 }
10 exports.registerNew = function(req, res) {
11 hits += 1;
12 res.send(200, {
13 hits: hits
14 });
15 }

Now, if we start our Node app and head to the route at http://localhost:3000, we will see that we have added the functionality for our Angular app as we expect.

 [image: First launch][image: After hitting the button]

Server-less with Amazon AWS

One of the biggest benefits to building a single-page app (SPA) is the ability to host flat files rather than needing to build and service a back-end infrastructure.

Most of the applications that we will build, however, need to be powered by a back-end server with custom data. There are a growing number of options that enable developers to focus on building only our front-end code and leave the back end alone.

Amazon recently released a new option that allows us to build server-less web applications from right inside the browser: Amazon AWS JavaScript SDK.

Amazon’s browser-based (and server-side with NodeJS) SDK allows us to confidently host our applications and interact with production-grade back-end services.

It’s now possible to host our application stack entirely on Amazon infrastructure, using S3 to host our application and files, DynamoDB as a NoSQL store, and other web-scale services. We can even securely accept payments from the client side and get all the benefits of the Amazon CDN.

With this release, the JavaScript SDK now allows us to interact with five of the dozens of Amazon AWS services. These five services are:

DynamoDB

This fast, fully managed NoSQL database service allows us to scale to infinite size with automatic triplicate replication with secure access controls.

Simple Notification Service (SNS)

This service is a fast, flexible, fully managed push notification service that allows us to push messages to mobile devices as well as other services, such as email or even to Amazon’s own Simple Queue Service (SQS).

Simple Queue Service (SQS)

This fast, reliable, fully managed queue service allows us to create huge queues in a well-managed way. We can create large request objects so we can fully decouple our application’s components from each other using a common queue.

Simple Storage Service (S3)

This well-known, web-scale, and fully managed data store allows us to store large objects (up to five terabytes) with an unlimited number of objects. We can use S3 to securely store encrypted and protected data all over the world. We’ll even use S3 to host our own Angular apps.

Security Token Service (STS)

This web service allows us to request temporary and limited privileged credentials for IAM users. We won’t cover STS in depth, but it does provide a nice interface for creating limited secure operations on our data.

AWSJS + Angular

In this section, we intend to demonstrate how to get our applications up and running on the AWSJS stack in minutes.

To do so, we’re going to create a miniature, bare-bones version of Gumroad to which we will allow our users to upload screenshots. We’ll let them sell their screenshots by integrating with the fantastic Stripe API.

 We cannot recommend these two services enough; this mini-demo is not intended to replace their services, only to demonstrate the power of Angular and the AWS API.

To create our product, we need to:

	Allow users to log into our service and store their unique emails

 	Allow users to upload files that are associated with them

 	Allow users to click on images, and present those users with an option to buy the uploaded image

 	Take credit card charges and accept money directly from a single-page Angular app

Getting Started

Let’s start with a standard structured index.html:

 1 <!doctype html>
 2 <html>
 3 <head>
 4 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.2-rc.3/angul\
 5 ar.min.js"></script>
 6 <script src="http://code.angularjs.org/1.2.2-rc.3/angular-route.min.js"></scr\
 7 ipt>
 8 <link rel="stylesheet" href="styles/bootstrap.min.css">
 9 </head>
10 <body>
11 <div ng-view></div>
12 <script src="scripts/app.js"></script>
13 <script src="scripts/controllers.js"></script>
14 <script src="scripts/services.js"></script>
15 <script src="scripts/directives.js"></script>
16 </body>
17 </html>

In this standard Angular template, we’re not loading anything crazy. We’re loading the base Angular library, as well as ngRoute and our custom application code.

Our application code is also standard. Our scripts/app.js file simply defines an Angular module with a single route /:

 1 angular.module('myApp', [
 2 'ngRoute',
 3 'myApp.services',
 4 'myApp.directives'])
 5 .config(function($routeProvider) {
 6 $routeProvider
 7 .when('/', {
 8 controller: 'MainCtrl',
 9 templateUrl: 'templates/main.html',
10 })
11 .otherwise({
12 redirectTo: '/'
13 });
14 });

Our scripts/controllers.js file creates controllers from the main module:

1 angular.module('myApp')
2 .controller('MainCtrl', function($scope) {
3
4 });

And our scripts/services.js and scripts/directives.js files are simple, as well:

1 // scripts/services.js
2 angular.module('myApp.services', []);

1 // scripts/directives.js
2 angular.module('myApp.directives', [])

 [image: Angular Structure]Angular Structure

Introduction

The AWS ecosystem is huge and used in production all over the world. The gross number of useful services that Amazon runs makes it a fantastic platform on top of which to power our applications.

Historically, the APIs have not always been the easiest to use and understand, so we hope to address some of that confusion here.

Traditionally, we’d use a signed request with our applications utilizing the client_id or secret access key model. Since we’re operating in the browser, it’s not a good idea to embed our client_id and our client_secret in the browser, where anyone can see it. (It’s not much of a secret anyway if it’s embedded in clear text, right?)

Luckily, the AWS team has provided us with an alternative method of identifying and authenticating our site to give access to the AWS resources.

The first step to creating an AWS-based Angular app is to set up this relatively complex authentication and authorization that we’ll use throughout the process.

Currently (at the time of this writing), the AWS JS library integrates cleanly with three authentication providers:

	Facebook

 	Google Plus

 	Amazon Login

In this section, we’ll be focusing on integrating with the Google+ API to host our login, but the process is very similar for the other two authentication providers.

Installation

First things first, we need to install the files in our index.html. Inside of our index.html, we need to include the AWS-SDK library and the Google API library.

We’ll modify our index.html to include these libraries:

 1 <!doctype html>
 2 <html>
 3 <head>
 4 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.2-rc.3/angul\
 5 ar.min.js"></script>
 6 <script src="http://code.angularjs.org/1.2.2-rc.3/angular-route.min.js"></scr\
 7 ipt>
 8 <script src="https://sdk.amazonaws.com/js/aws-sdk-2.0.0-rc1.min.js"></script>
 9 <link rel="stylesheet" href="styles/bootstrap.min.css">
10 </head>
11 <body>
12 <div ng-view></div>
13 <script src="scripts/app.js"></script>
14 <script src="scripts/controllers.js"></script>
15 <script src="scripts/services.js"></script>
16 <script src="scripts/directives.js"></script>
17 <script type="text/javascript" src="https://js.stripe.com/v2/"></script>
18 <script type="text/javascript">
19 (function() {
20 var po = document.createElement('script'); po.type = 'text/javascript'; po\
21 .async = true;
22 po.src = 'https://apis.google.com/js/client:plusone.js?onload=onLoadCallba\
23 ck';
24 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBef\
25 ore(po, s);
26 })();
27 </script>
28 </body>
29 </html>

Now, notice that we added an onload callback for the Google JavaScript library and we did not use the ng-app to bootstrap our application. If we let Angular automatically bootstrap our application, we’ll run into a race condition where the Google API may not be loaded when the application starts.

That non-deterministic nature of our application will make the experience unusable, so instead, we will manually bootstrap our app in the onLoadCallback function.

To manually bootstrap the application, we add the onLoadCallback function to the window service. Before we can call to bootstrap Angular, we need to be sure that the Google login client is loaded.

The Google API client, or gapi, is included at run time and is set by default to lazy-load its services. By telling the gapi.client to load the oauth2 library in advance of starting our app, we avoid any potential mishaps as a consequence of the oauth2 library being unavailable.

 1 // in scripts/app.js
 2 window.onLoadCallback = function() {
 3 // When the document is ready
 4 angular.element(document).ready(function() {
 5 // Bootstrap the oauth2 library
 6 gapi.client.load('oauth2', 'v2', function() {
 7 // Finally, bootstrap our angular app
 8 angular.bootstrap(document, ['myApp']);
 9 });
10 });
11 }

With the necessary libraries available and our application ready to be bootstrapped, we can set up the authorization part of our app.

Running

As we are using services that depend upon our URL to be an expected URL, we need to run this as a server, rather than simply loading the HTML in our browser.

We recommend using the incredibly simple Python SimpleHTTPServer

1 $ python -m SimpleHTTPServer 9000

Now we can load the URL http://localhost:9000/ in our browser.

User Authorization/Authentication

First, we need to get a client_id and a client_secret from Google so that we’ll be able to actually interact with the Google Plus login system.

To get an app, head over to the Google APIs console and create a project.

 [image: Create a Google Plus project]Create a Google Plus project

Open the project by clicking on the name, and click on the APIs & auth nav button. From here, we need to enable the Google+ API. Find the APIs button and click on it. Find the Google+ API item and click the OFF to ON slider.

 [image: Enable Google+ API]Enable Google+ API

Once that’s set, we need to create and register an application and use its application ID to make authenticated calls.

Find the Registered apps option and click on it to create an app. Make sure to select the Web Application option when it asks about the type of application.

 [image: Create a registered application]Create a registered application

Once that is set, we reach the application details page. Select the OAuth 2.0 Client ID dropdown and take note of the application’s Client ID. We’ll use this ID in a few minutes.

Lastly, add the localhost origin to the WEB ORIGIN of the application thus ensuring that we can develop using the API locally:

 [image: Registered app details]Registered app details

Next, we need to create a Google+ login directive. This Angular directive will enable us to add a customized login button to our app with a single file element.

 For more information about directives, check out our directives chapter.

We’re going to have two pieces of functionality attached to our Google login: an element that we’ll attach to the standard Google login button and a custom function that we’ll run after the button has been rendered.

The final directive will look like the following in scripts/directives.js:

 1 angular.module('myApp.directives', [])
 2 .directive('googleSignin', function() {
 3 return {
 4 restrict: 'A',
 5 template: '',
 6 replace: true,
 7 scope: {
 8 afterSignin: '&'
 9 },
10 link: function(scope, ele, attrs) {
11 // Set standard google class
12 attrs.$set('class', 'g-signin');
13 // Set the clientid
14 attrs.$set('data-clientid',
15 attrs.clientId+'.apps.googleusercontent.com');
16 // build scope urls
17 var scopes = attrs.scopes || [
18 'auth/plus.login',
19 'auth/userinfo.email'
20];
21 var scopeUrls = [];
22 for (var i = 0; i < scopes.length; i++) {
23 scopeUrls.push('https://www.googleapis.com/' + scopes[i]);
24 };
25
26 // Create a custom callback method
27 var callbackId = "_googleSigninCallback",
28 directiveScope = scope;
29 window[callbackId] = function() {
30 var oauth = arguments[0];
31 directiveScope.afterSignin({oauth: oauth});
32 window[callbackId] = null;
33 };
34
35 // Set standard google signin button settings
36 attrs.$set('data-callback', callbackId);
37 attrs.$set('data-cookiepolicy', 'single_host_origin');
38 attrs.$set('data-requestvisibleactions', 'http://schemas.google.com/AddActi\
39 vity')
40 attrs.$set('data-scope', scopeUrls.join(' '));
41
42 // Finally, reload the client library to
43 // force the button to be painted in the browser
44 (function() {
45 var po = document.createElement('script'); po.type = 'text/javascript'; po\
46 .async = true;
47 po.src = 'https://apis.google.com/js/client:plusone.js';
48 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBef\
49 ore(po, s);
50 })();
51 }
52 }
53 });

Although this directive is long, it’s fairly straightforward. We’re assigning the Google button class g-signin, attaching the Client ID based on an attribute we pass in, building the scopes, etc.

One unique part of this directive is that we’re creating a custom callback on the window object. Effectively, this object allows us to fake the callback method we need to call in JavaScript when we make the function, allowing us to actually make the call to the local afterSignin action instead.

We then clean up the global object, because we’re allergic to global state in AngularJS.

With our directive primed and ready to go, we can include the directive in our view. We’re going to call the directive in our view like so, replacing the client-id and the after-signin attributes on the directive with our own:

 Make sure to include the oauth parameter exactly as it’s spelled in the after-signup attribute. We must call the parameter this way due to how Angular directives call methods with parameters inside of directives.

1 <h2>Signin to ngroad</h2>
2 <div google-signin
3 client-id='CLIENT_ID'
4 after-signin="signedIn(oauth)"></div>
5 <pre>{{ user | json }}</pre>

 The user data in the example is the returned access_token for our login (if we log in). It is not saved on our servers, it is not sensitive data, and it will disappear when we leave the page.

Finally, we need our button to actually cause an action, so we need to define the after-signin method signedIn(oauth) in our controller.

This signedIn() method kills off the authenticated page for us in our real application. Note: This method would be an ideal place to set a redirect to a new route (for instance, the /dashboard route for authenticated users).

1 angular.module('myApp')
2 .controller('MainCtrl',
3 function($scope) {
4 $scope.signedIn = function(oauth) {
5 $scope.user = oauth;
6 }
7 });

UserService

Before we dive a bit deeper into the AWS side of things, let’s create ourselves a UserService that is responsible for holding on to our new user. This UserService will handle the bulk of the work for interacting with the AWS back end and will keep a copy of the current user.

Although we’re not quite ready to attach a back end, we can start building it out to handle holding on to a persistent copy of the user instance.

In our scripts/services.js, we create the beginnings of our UserService:

 1 angular.module('myApp.services', [])
 2 .factory('UserService', function($q, $http) {
 3 var service = {
 4 _user: null,
 5 setCurrentUser: function(u) {
 6 if (u && !u.error) {
 7 service._user = u;
 8 return service.currentUser();
 9 } else {
10 var d = $q.defer();
11 d.reject(u.error);
12 return d.promise;
13 }
14 },
15 currentUser: function() {
16 var d = $q.defer();
17 d.resolve(service._user);
18 return d.promise;
19 }
20 };
21 return service;
22 });

Although this setup is a bit contrived for the time being, we want the functionality to set the currentUser as a permanent fixture in the service.

 Remember, services are singleton objects that live for the duration of the application lifecycle.

Now, instead of simply setting our user in the return of the signedIn() function, we can set the user to the UserService:

 1 angular.module('myApp')
 2 .controller('MainCtrl',
 3 function($scope) {
 4 $scope.signedIn = function(oauth) {
 5 UserService.setCurrentUser(oauth)
 6 .then(function(user) {
 7 $scope.user = user;
 8 });
 9 }
10 });

For our application to work, we need to hold onto actual user emails so we can provide a better method of interacting with our users and hold onto some persistent, unique data per user.

We use the gapi.client.oauth2.userinfo.get() method to fetch the user’s email address rather than holding onto the user’s access_token (and other various access details).

In our UserService, we need to update our currentUser() method to include this functionality:

 1 // ...
 2 },
 3 currentUser: function() {
 4 var d = $q.defer();
 5 if (service._user) {
 6 d.resolve(service._user);
 7 } else {
 8 gapi.client.oauth2.userinfo.get()
 9 .execute(function(e) {
10 service._user = e;
11 })
12 }
13 return d.promise;
14 }
15 // ...

All Aboard AWS

Now, as we said when we first started this journey, we need to set up authorization with the AWS services.

 If you don’t have an AWS account, head over to aws.amazon.com and grab an account. It’s free and quick.

First things first: Let’s create an IAM role. IAM, or AWS’s Identity and Access Management service, is one of the reasons why the AWS services are so powerful. With IAM, we can create fine-grain access controls over our systems and data.

Unfortunately, the flexibility and power of IAM also make it a bit more complex, so we’ll walk through creating it here and make it as clear as we can.

Let’s create the IAM role by heading to the IAM console and clicking on the Roles navigation link.

We have to click the Create New Role button to give our new role a name. We’ll call ours the google-web-role.

 [image: Create a new role]Create a new role

Next, we need to configure the IAM role to be a Web Identity Provider Access role type so we can manage our new role’s access to our AWS services.

 [image: Set the role type]Set the role type

Remember the CLIENT ID that we created above with Google? In the next screen, select Google from the dropdown and paste the CLIENT ID into the Audience box.

This step unites our IAM role and our Google app so that our application can call out to AWS services with an authenticated Google user.

 [image: Google auth]Google auth

We then click through the Verify Trust (the next screen, which shows the raw configuration for AWS services) and create the policy for our applications.

The Policy Generator is the easiest method of getting up and running quickly to build policies. At this point, we must set what actions our users can and cannot take.

We’re going to make an effort to be very specific with regard to the actions that our users may take:

S3

On the specific bucket (ng-newsletter-example, in our example app), we’re going to allow our users to take the following actions:

	GetObject

 	ListBucket

 	PutObject

The Amazon Resource Name (ARN) for our S3 bucket is:

1 arn:aws:s3:::ng-newsletter-example/*

DynamoDB

For two specific table resources, we’ll allow the following actions:

	GetItem

 	PutItem

 	Query

The Amazon Resource Name (ARN) for our DynamoDB tables are the following:

1 [
2 "arn:aws:dynamodb:us-east-1:<ACCOUNT_ID>:table/Users",
3 "arn:aws:dynamodb:us-east-1:<ACCOUNT_ID>:table/UsersItems"
4]

 	
 [image: information]
 	
 Your <ACCOUNT_ID> can be found on your Account dashboard. Click on the `My Account` button at the top of the page and navigate to the page. Your ACCOUNT_ID is the number called 'Account Number:'.</ACCOUNT_ID>

The final version of our policy can be found here.

 [image: Adding the IAM policy]Adding the IAM policy

 For more information on the confusing ARN numbers, check out the relevant Amazon documentation here.

One final piece of information that we need to hold onto is the Role ARN. We can find this Role ARN on the summary tab of the IAM user in our IAM console.

Take note of this string – we’ll set it in a moment.

 [image: Role ARN]Role ARN

Now that we’re finally done with creating our IAM user, we can move on to integrating it inside of our Angular app.

AWSService

We’ll move the root of our application for integrating with AWS into it’s own service we’re going to build called the AWSService.

Since we are going to need to have the ability to custom configure our service at configure-time, we’ll want to create it as a provider.

 Remember, the only service-type that can be injected into the .config() function is the .provider() type.

First, we’ll create the stub of our provider in scripts/services.js:

 1 // ...
 2 .provider('AWSService', function() {
 3 var self = this;
 4 self.arn = null;
 5
 6 self.setArn = function(arn) {
 7 if (arn) self.arn = arn;
 8 }
 9
10 self.$get = function($q) {
11 return {}
12 }
13 });

As we can already start to notice, we’ll need to set the Role ARN for this service so that we can attach the proper user to the correct services.

Setting up our AWSService as a provider like we do above enables us to set the following in our scripts/app.js file:

1 angular.module('myApp',
2 ['ngRoute', 'myApp.services', 'myApp.directives']
3)
4 .config(function(AWSServiceProvider) {
5 AWSServiceProvider
6 .setArn(
7 'arn:aws:iam::<ACCOUNT_ID>:role/google-web-role');
8 })

Now, we can carry on with the AWSService and not worry about overriding our Role ARN as well as it becomes incredibly easy to share amongst our different applications instead of recreating it every time.

Our AWSService at this point doesn’t really do anything yet. The last component that we’ll need to ensure works is that we give access to our actual users who log in.

This final step is where we’ll need to tell the AWS library that we have an authenticated user that can operate as our IAM role.

We’ll create this credentials as a promise that will eventually be resolved so we can define the different portions of our application without needing to bother checking if the credentials have been loaded simply by using the .then() method on promises.

Let’s modify our $get() method in our service adding a method that we’ll call setToken() to create a new set of WebIdentityCredentials:

 1 // ...
 2 self.$get = function($q) {
 3 var credentialsDefer = $q.defer(),
 4 credentialsPromise = credentialsDefer.promise;
 5 return {
 6 credentials: function() {
 7 return credentialsPromise;
 8 },
 9 setToken: function(token, providerId) {
10 var config = {
11 RoleArn: self.arn,
12 WebIdentityToken: token,
13 RoleSessionName: 'web-id'
14 }
15 if (providerId) {
16 config['ProviderId'] = providerId;
17 }
18 self.config = config;
19 AWS.config.credentials =
20 new AWS.WebIdentityCredentials(config);
21 credentialsDefer
22 .resolve(AWS.config.credentials);
23 }
24 }
25 }
26 // ...

Now, when we get our oauth.access_token back from our login through Google, we’ll pass in the id_token to this function which will take care of the AWS config setup.

Let’s modify the UserService service such that we call the setToken() method:

 1 // ...
 2 .factory('UserService', function($q, $http) {
 3 var service = {
 4 _user: null,
 5 setCurrentUser: function(u) {
 6 if (u && !u.error) {
 7 AWSService.setToken(u.id_token);
 8 return service.currentUser();
 9 } else {
10 var d = $q.defer();
11 d.reject(u.error);
12 return d.promise;
13 }
14 },
15 // ...

Starting on dynamo

In our application, we’ll want to associate any images that one user uploads to that unique user. To create this association, we’ll create a dynamo table that stores our users as well as another that stores the association between the user and the user’s uploaded files.

To start interacting with dynamo, we’ll first need to instantiate a dynamo object. We’ll do this inside of our AWSService service object, like so:

 1 // ...
 2 setToken: function(token, providerId) {
 3 // ...
 4 },
 5 dynamo: function(params) {
 6 var d = $q.defer();
 7 credentialsPromise.then(function() {
 8 var table = new AWS.DynamoDB(params);
 9 d.resolve(table);
10 });
11 return d.promise;
12 },
13 // ...

As we discussed earlier, by using promises inside of our service objects, we only need to use the promise .then() api method to ensure our credentials are set when we’re starting to use them.

You might ask why we’re setting params with our dynamo function. Sometimes we’ll want to interact with our dynamoDB with different configurations and different setups. This might cause us to need to recreate objects that we already use once in our page.

Rather than having this duplication around with our different AWS objects, we’ll cache these objects using the built-in angular $cacheFactory service.

$cacheFactory

The $cacheFactory service enables us to create an object if we need it or recycle and reuse an object if we’ve already needed it in the past.

To start caching, we’ll create a dynamoCache object where we’ll store our cached dynamo objects:

1 // ...
2 self.$get = function($q, $cacheFactory) {
3 var dynamoCache = $cacheFactory('dynamo'),
4 credentialsDefer = $q.defer(),
5 credentialsPromise = credentialsDefer.promise;
6
7 return {
8 // ...

Now, back in our dynamo method, we can draw from the cache if the object exists in the cache or we can set it to create the object when necessary:

 1 // ...
 2 dynamo: function(params) {
 3 var d = $q.defer();
 4 credentialsPromise.then(function() {
 5 var table =
 6 dynamoCache.get(JSON.stringify(params));
 7 if (!table) {
 8 var table = new AWS.DynamoDB(params);
 9 dynamoCache.put(JSON.stringify(params), table);
10 };
11 d.resolve(table);
12 });
13 return d.promise;
14 },
15 // ...

Saving our currentUser

When a user logs in and we fetch the user’s email, this is a good point for us to add the user to our user’s database.

To create a dynamo object, we’ll use the promise api method .then() again, this time outside of the service. We’ll create an object that will enable us to interact with the User’s table we’ll create in the dynamo API console.

 We’ll need to manually create these dynamo tables the first time because we do not want to give access to our web users the ability to create dynamo tables, which might include us.

To create a dynamo table, head to the dynamo console and find the Create Table button.

Create a table called Users with a primary key type of Hash. The Hash Attribute Name will be the primary key that we’ll use to get and put objects on the table. For this demo, we’ll use the string: User email.

 [image: Create the Users dynamo table]Create the Users dynamo table

Click through the next two screens and set up a basic alarm by entering your email. Although this step isn’t 100% necessary, it’s easy to forget that our tables are up and without being reminded, we might just end up leaving them up forever.

Once we’ve clicked through the final review screen and click create, we’ll end up with a brand new Dynamo table where we will store our users.

While we are at the console, we’ll create the join table. This is the table that will join the User and the items they upload.

Find the Create Table button again and create a table called UsersItems with a primary key type of Hash and Range. For this table, The Hash Attribute Name will also be User email and the Range Attribute Name will be ItemId.

This will allow us to query for User’s who have created items based on the User’s email.

The rest of the options that are available on the next screens are optional and we can click through the rest.

At this point, we have two dynamo tables available.

Back to our UserService, we’ll first query the table to see if the user is already saved in our database, otherwise we’ll create an entry in our dynamo database.

 1 var service = {
 2 _user: null,
 3 UsersTable: "Users",
 4 UserItemsTable: "UsersItems",
 5 // ...
 6 currentUser: function() {
 7 var d = $q.defer();
 8 if (service._user) {
 9 d.resolve(service._user);
10 } else {
11 // After we've loaded the credentials
12 AWSService.credentials().then(function() {
13 gapi.client.oauth2.userinfo.get()
14 .execute(function(e) {
15 var email = e.email;
16 // Get the dynamo instance for the
17 // UsersTable
18 AWSService.dynamo({
19 params: {TableName: service.UsersTable}
20 })
21 .then(function(table) {
22 // find the user by email
23 table.getItem({
24 Key: {'User email': {S: email}}
25 }, function(err, data) {
26 if (Object.keys(data).length == 0) {
27 // User didn't previously exist
28 // so create an entry
29 var itemParams = {
30 Item: {
31 'User email': {S: email},
32 data: { S: JSON.stringify(e) }
33 }
34 };
35 table.putItem(itemParams,
36 function(err, data) {
37 service._user = e;
38 d.resolve(e);
39 });
40 } else {
41 // The user already exists
42 service._user =
43 JSON.parse(data.Item.data.S);
44 d.resolve(service._user);
45 }
46 });
47 });
48 });
49 });
50 }
51 return d.promise;
52 },
53 // ...

Although it looks like a lot of code, this simply does a find or create by username on our dynamoDB.

At this point, we can finally get back to our view and check out what’s happening in the view.

In our templates/main.html, we’ll add a container that simply shows the Login form if there is no user and shows the user details if there is a user.

We’ll do this with simple ng-show directives and our new google-signin directive.

 1 <div class="container">
 2 <h1>Home</h1>
 3 <div ng-show="!user" class="row">
 4 <div class="col-md-12">
 5 <h2>Signup or login to ngroad</h2>
 6 <div google-signin
 7 client-id='395118764200'
 8 after-signin="signedIn(oauth)"></div>
 9 </div>
10 </div>
11 <div ng-show="user">
12 <pre>{{ user | json }}</pre>
13 </div>
14 </div>

With our view set up, we can now work with logged in users inside the second <div> (in production, it’s a good idea to make it a separate route).

Uploading to s3

Now that we have our logged in user stored in dynamo, it’s time we create the ability to handle file upload where we’ll store our files directly on S3.

First and foremost, a shallow dive into CORS. CORS, or Cross-Origin Resource Sharing is a security features that modern browsers support allowing us to make requests to foreign domains using a standard protocol.

Luckily, the AWS team has made supporting CORS incredibly simple. If we’re hosting our site on s3, then we don’t even need to set up CORS (other than for development purposes).

To enable CORS on a bucket, head to the s3 console and find the bucket that we’re going to use for file uploads. For this demo, we’re using the ng-newsletter-example bucket.

Once the bucket has been located, click on it and load the Properties tab and pull open the Permissions option. click on the Add CORS configuration button and pick the standard CORS configuration.

 [image: Enable CORS on an S3 bucket]Enable CORS on an S3 bucket

We’ll create a simple file upload directive that kicks off a method that uses the HTML5 File API to handle the file upload. This way, when the user selects the file the file upload will immediately start.

To handle the file selection directive, we’ll create a simple directive that binds to the change event and calls a method after the file has been selected.

The directive is simple:

 1 // ...
 2 .directive('fileUpload', function() {
 3 return {
 4 restrict: 'A',
 5 scope: { fileUpload: '&' },
 6 template: '<input type="file" id="file" /> ',
 7 replace: true,
 8 link: function(scope, ele, attrs) {
 9 ele.bind('change', function() {
10 var file = ele[0].files;
11 if (file) scope.fileUpload({files: file});
12 })
13 }
14 }
15 })

This directive can be used in our view like so:

1 <!-- ... -->
2 <div class="row"
3 <div class="col-md-12">
4 <div file-upload="onFile(files)"></div>
5 </div>
6 </div>

Now, when the file selection has been made, it will call the method onFile(files) in our current scope.

 Although we’re creating our own file directive here, we recommend checking out the ngUpload library for handling file uploads.

Inside the onFile(files) method, we’ll want to handle the file upload to s3 and save the record to our dynamo database table. Instead of placing this functionality in the controller, we’ll be nice angular citizens and place this in our UserService service.

First, we’ll need to make sure we have the ability to get an s3 JavaScript object just like we made the dynamo available.

 1 // ...
 2 var dynamoCache = $cacheFactory('dynamo'),
 3 s3Cache = $cacheFactory('s3Cache');
 4 // ...
 5 return {
 6 // ...
 7 s3: function(params) {
 8 var d = $q.defer();
 9 credentialsPromise.then(function() {
10 var s3Obj = s3Cache.get(JSON.stringify(params));
11 if (!s3Obj) {
12 var s3Obj = new AWS.S3(params);
13 s3Cache.put(JSON.stringify(params), s3Obj);
14 }
15 d.resolve(s3Obj);
16 });
17 return d.promise;
18 },
19 // ...

This method works the exact same way that our dynamo object creation works, giving us direct access to the s3 instance object as we’ll see shortly.

Handling file uploads

To handle file uploads, we’ll create a method that we’ll call uploadItemForSale() in our UserService. Planning our functionality, we’ll want to:

	Upload the file to S3

 	Get a signedUrl for the file

 	Save this information to our database

We’re going to be using our current user through this process, so we’ll start out by making sure we have our user and get an instance

 1 // in scripts/services.js
 2 // ...
 3 },
 4 Bucket: 'ng-newsletter-example',
 5 uploadItemForSale: function(items) {
 6 var d = $q.defer();
 7 service.currentUser().then(function(user) {
 8 // Handle the upload
 9 AWSService.s3({
10 params: {
11 Bucket: service.Bucket
12 }
13 }).then(function(s3) {
14 // We have a handle of our s3 bucket
15 // in the s3 object
16 });
17 });
18 return d.promise;
19 },
20 // ...

With the handle of the s3 bucket, we can create a file to upload. There are 3 required parameters when uploading to s3:

	Key - The key of the file object

 	Body - The file blob itself

 	ContentType - The type of file

Luckily for us, all this information is available on the file object when we get it from the browser.

 1 // ...
 2 // Handle the upload
 3 AWSService.s3({
 4 params: {
 5 Bucket: service.Bucket
 6 }
 7 }).then(function(s3) {
 8 // We have a handle of our s3 bucket
 9 // in the s3 object
10 var file = items[0]; // Get the first file
11 var params = {
12 Key: file.name,
13 Body: file,
14 ContentType: file.type
15 }
16
17 s3.putObject(params, function(err, data) {
18 // The file has been uploaded
19 // or an error has occurred during the upload
20 });
21 });
22 // ...

By default, s3 uploads files in a protected form. It prevents us from uploading and having the files available to the public without some work. This is a definite feature as anything that we upload to s3 will be protected and it forces us to make conscious choices about what files will be public and which are not.

With that in mind, we’ll create a temporary url that expires after a given amount of time. In our ngroad marketplace, this will give a time-expiry on each of the items that are available for sale.

In any case, to create a temporary url, we’ll fetch a signedUrl and store that in our join table for User’s Items:

 1 // ...
 2 s3.putObject(params, function(err, data) {
 3 if (!err) {
 4 var params = {
 5 Bucket: service.Bucket,
 6 Key: file.name,
 7 Expires: 900*4 // 1 hour
 8 };
 9 s3.getSignedUrl('getObject', params,
10 function(err, url) {
11 // Now we have a url
12 });
13 }
14 });
15 });
16 // ...

Finally, we can save our User’s object along with the file they uploaded in our Join table:

 1 // ...
 2 s3.getSignedUrl('getObject', params,
 3 function(err, url) {
 4 // Now we have a url
 5 AWSService.dynamo({
 6 params: {TableName: service.UserItemsTable}
 7 }).then(function(table) {
 8 var itemParams = {
 9 Item: {
10 'ItemId': {S: file.name},
11 'User email': {S: user.email},
12 data: {
13 S: JSON.stringify({
14 itemId: file.name,
15 itemSize: file.size,
16 itemUrl: url
17 })
18 }
19 }
20 };
21 table.putItem(itemParams, function(err, data) {
22 d.resolve(data);
23 });
24 });
25 });
26 // ...

This method, all together is available here.

We can use this new method inside of our controller’s onFile() method, which we can write to be similar to:

1 $scope.onFile = function(files) {
2 UserService.uploadItemForSale(files)
3 .then(function(data) {
4 // Refresh the current items for sale
5 });
6 }

Querying dynamo

Ideally, we’ll want to be able to list all the products a certain user has available for purchase. In order to set up a listing of the available items, we will use the query api.

The dynamo query api is a tad esoteric and can be considerably confusing when looking at it at first glance.

 The dynamo query documentation is available http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

Basically, we’ll match object schemes up with a comparison operator, such as equal, lt (less than), or gt (greater than) and several more. Our join table’s key is the User email key, so we’ll match this key against the current user’s email as the query key.

As we did with our other APIs related to users, we’ll creat a method inside of our UserService to handle this querying of the database:

 1 // ...
 2 itemsForSale: function() {
 3 var d = $q.defer();
 4 service.currentUser().then(function(user) {
 5 AWSService.dynamo({
 6 params: {TableName: service.UserItemsTable}
 7 }).then(function(table) {
 8 table.query({
 9 TableName: service.UserItemsTable,
10 KeyConditions: {
11 "User email": {
12 "ComparisonOperator": "EQ",
13 "AttributeValueList": [
14 {S: user.email}
15]
16 }
17 }
18 }, function(err, data) {
19 var items = [];
20 if (data) {
21 angular.forEach(data.Items, function(item) {
22 items.push(JSON.parse(item.data.S));
23 });
24 d.resolve(items);
25 } else {
26 d.reject(err);
27 }
28 })
29 });
30 });
31 return d.promise;
32 },
33 // ...

 In the above query, the KeyConditions and "User email" are required parameters.

Showing the listing in HTML

To show our user’s images in HTML, we’ll simply assign the result of our new itemsForSale() method to a property of the controller’s scope:

1 var getItemsForSale = function() {
2 UserService.itemsForSale()
3 .then(function(images) {
4 $scope.images = images;
5 });
6 }
7 // Load the user's list initially
8 getItemsForSale();

Now we can iterate over the list of items easily using the ng-repeat directive:

 1 <!-- ... -->
 2 <div ng-show="images">
 3 <div class="col-sm-6 col-md-4"
 4 ng-repeat="image in images">
 5 <div class="thumbnail">
 6 <img ng-click="sellImage(image)"
 7 data-ng-src="{{image.itemUrl}}" />
 8 </div>
 9 </div>
10 </div>

 [image: Image listing]Image listing

Selling our work

The final component of our AWS-powered demo app is the ability to create sales from our Single Page App.

 In order to actually take money from customers, we’ll need a thin back-end component that will need to convert stripe tokens into sales on Stripe. We cover this in our upcoming book that’s available for pre-release at ng-book.com.

To start handling payments, we’ll create a StripeService that will handle creating charges for us. Since we’ll want to support configuring Stripe in the .config() method in our module, we’ll need to create a .provider().

The service itself is incredibly simple as it leverages the Stripe.js library to do the heavy lifting work.

 1 // ...
 2 .provider('StripeService', function() {
 3 var self = this;
 4
 5 self.setPublishableKey = function(key) {
 6 Stripe.setPublishableKey(key);
 7 }
 8
 9 self.$get = function($q) {
10 return {
11 createCharge: function(obj) {
12 var d = $q.defer();
13
14 if (!obj.hasOwnProperty('number') ||
15 !obj.hasOwnProperty('cvc') ||
16 !obj.hasOwnProperty('exp_month') ||
17 !obj.hasOwnProperty('exp_year')
18) {
19 d.reject("Bad input", obj);
20 } else {
21 Stripe.card.createToken(obj,
22 function(status, resp) {
23 if (status == 200) {
24 d.resolve(resp);
25 } else {
26 d.reject(status);
27 }
28 });
29 }
30
31 return d.promise;
32 }
33 }
34 }
35 });

If you do not have a Stripe account, get one at stripe.com. Stripe is an incredibly developer friendly payment processing gateway, which makes it ideal for us building our ngroad marketplace on it.

Once you have an account, find your Account Settings page and locate the API Keys page. Find the publishable key (either the test one – which will not actually make charges or the production version) and take note of it.

In our scripts/app.js file, add the following line and replace the ‘pk_test_YOUR_KEY’ publishable key with yours.

1 // ...
2 .config(function(StripeServiceProvider) {
3 StripeServiceProvider
4 .setPublishableKey('pk_test_YOUR_KEY');
5 })

Using Stripe

When a user clicks on an image they like, we’ll open a form in the browser that takes credit card information. We’ll set the form to submit to an action on our controller called submitPayment().

Notice above where we have the thumbnail of the image, we include an action when the image is clicked that calls the sellImage() action with the image.

Implementing the sellImage() function in the MainCtrl, it looks like:

1 // ...
2 $scope.sellImage = function(image) {
3 $scope.showCC = true;
4 $scope.currentItem = image;
5 }
6 // ...

Now, when the image is clicked, the showCC property will be true and we can show the credit card form. We’ve included an incredibly simple one here:

 1 <div ng-show="showCC">
 2 <form ng-submit="submitPayment()">
 3
 4 Card Number
 5 <input type="text"
 6 ng-minlength="16"
 7 ng-maxlength="20"
 8 size="20"
 9 data-stripe="number"
10 ng-model="charge.number" />
11 CVC
12 <input type="text"
13 ng-minlength="3"
14 ng-maxlength="4"
15 data-stripe="cvc"
16 ng-model="charge.cvc" />
17 Expiration (MM/YYYY)
18 <input type="text"
19 ng-minlength="2"
20 ng-maxlength="2"
21 size="2"
22 data-stripe="exp_month"
23 ng-model="charge.exp_month" />
24 /
25 <input type="text"
26 ng-minlength="4"
27 ng-maxlength="4"
28 size="4"
29 data-stripe="exp-year"
30 ng-model="charge.exp_year" />
31 <input type="hidden"
32 name="email"
33 value="user.email" />
34 <button type="submit">Submit Payment</button>
35 </form>
36 </div>

We’re binding the form almost entirely to the charge object on the scope, which we will use when we make the charge.

The form itself submits to the function submitPayment() on the controller’s scope. The submitPayment() function looks like:

1 // ...
2 $scope.submitPayment = function() {
3 UserService
4 .createPayment($scope.currentItem, $scope.charge)
5 .then(function(data) {
6 $scope.showCC = false;
7 });
8 }
9 // ...

The last thing that we’ll have to do to be able to take charges is implement the createPayment() method on the UserService.

Now, since we’re taking payment on the client-side, we’re technically not going to be able to process payments, we can only accept the stripeToken which we can set a background process to manage handling turning the stripe tokens into actual payments.

Inside of our createPayment() function, we’ll call our StripeService to generate the stripeToken. Then, we’ll add the payment to an Amazon SQS queue so that our background process can make the charge.

First, we’ll use the AWSService to access our SQS queues.

Unlike our other services, the SQS service requires a bit more integration to make it work as they require us to have a URL to interact with them. In our AWSService service object, we’ll need to cache the URL that we’re working with and create a new object every time time using that object instead. The idea behind the workflow is the exact same, however.

 1 // ...
 2 self.$get = function($q, $cacheFactory) {
 3 var dynamoCache = $cacheFactory('dynamo'),
 4 s3Cache = $cacheFactory('s3Cache'),
 5 sqsCache = $cacheFactory('sqs');
 6 // ...
 7 sqs: function(params) {
 8 var d = $q.defer();
 9 credentialsPromise.then(function() {
10 var url = sqsCache.get(JSON.stringify(params)),
11 queued = $q.defer();
12 if (!url) {
13 var sqs = new AWS.SQS();
14 sqs.createQueue(params,
15 function(err, data) {
16 if (data) {
17 url = data.QueueUrl;
18 sqsCache.put(JSON.stringify(params), url);
19 queued.resolve(url);
20 } else {
21 queued.reject(err);
22 }
23 });
24 } else {
25 queued.resolve(url);
26 }
27 queued.promise.then(function(url) {
28 var queue =
29 new AWS.SQS({params: {QueueUrl: url}});
30 d.resolve(queue);
31 });
32 })
33 return d.promise;
34 }
35 // ...

Now we can use SQS inside of our createPayment() function. One caveat to the SQS service is that it can only send simple messages, such as with strings and numbers. It cannot send objects, so we’ll need to call JSON.stringify on our objects that we’ll want to pass through the queue.

 1 // ...
 2 ChargeTable: "UserCharges",
 3 // ...
 4 createPayment: function(item, charge) {
 5 var d = $q.defer();
 6 StripeService.createCharge(charge)
 7 .then(function(data) {
 8 var stripeToken = data.id;
 9 AWSService.sqs(
10 {QueueName: service.ChargeTable}
11).then(function(queue) {
12 queue.sendMessage({
13 MessageBody: JSON.stringify({
14 item: item,
15 stripeToken: stripeToken
16 })
17 }, function(err, data) {
18 d.resolve(data);
19 })
20 })
21 }, function(err) {
22 d.reject(err);
23 });
24 return d.promise;
25 }

When we submit the form…

 [image: Payment handling]Payment handling

Our SQS queue grows and we have a payment just waiting to be completed.

 [image: SQS queue]SQS queue

Server-less with Firebase

As a client-side framework, Angular alone is not enough to build a full back-end webapp. Often times, it’s difficult to know when to sync our data with the back-end, and how to handle the changes and potential conflicts of data between versions of modified content.

 	
 [image: information]
 	
 Imagine we have two instances of our application running at the same time. What if both instances are trying to edit the same data? Without handling this case, we can get into trouble, especially if we’re building the front-end for a complex web application, like a bank.

Using Firebase we can easily add a backend to our Angular app. Featured on the Angular.js home page, Firebase is quickly becoming the standard for Angular persistence.

Firebase is a real-time back-end for building collaborative, modern applications. Rather than requiring us to focus on building custom request-response models with a server-side component where we manually worry about data-synchronization, Firebase lets us get our app up and running in minutes. We can build a data-backed webapp entirely in Angular that can scale out-of-the-box and update all clients in real-time.

Even more, data stored in Firebase is standard schema-less JSON, which makes it incredibly easy to save data models of any type into Firebase. If a device loses network connection, Firebase continues to allow access to locally cached data and seamlessly synchronizes changes with the cloud when the device comes back online.

 	
 [image: information]
 	
 The Firebase client libraries and REST API provide easy access to that data from any platform. Although we’re focusing specifically on Angular, this means native apps or other server-side apps can reach the data saved by Angular.

3-Way Data Binding With Firebase and Angular

With Angular, rendering content to the browser is elegant and easy. Storing and retrieving data, the other major component to production-level webapps, is handled elegantly by Firebase. This makes Firebase an excellent partner to Angular.

Angular is great with its two-way data binding between models in JavaScript and the DOM. By syncing our Angular model with Firebase, our app’s data in the model is synchronized in real-time across all clients. That means that when data changes in one client, these updates are immediately persisted to Firebase and rendered across all connected devices.

 [image:]

When data is updated in any of the three places (View, Model, or Firebase), the changes propagate in real-time to the other two across all clients.

Getting Started With AngularFire

It’s easy to create real-time web applications using Firebase and Angular thanks to the official Angular library: AngularFire. The AngularFire bindings were built by the Firebase team specifically for integration with Angular applications, as we’ll see.

There are only four steps to backing our Angular app on Firebase using AngularFire:

1. Sign up and Create a Firebase

Before we can actually save or retrieve any data from Firebase, we’ll need an account. It’s free to create an account, so let’s sign up.

 [image:]

First, head to firebase.com and click on the Sign up button (or login if you already have an account):

 [image:]

Now that we have signed up for an account, we can create our first Firebase. The name we choose will be part of the URL we’ll use to reference our Firebase data.

For example, when we create a Firebase with the name of ng-newsletter, our Firebase URL will be available at https://ng-newsletter.firebaseio.com.

1 https://<my-firebase-name>.firebaseio.com/

 [image:][image:]

The AngularFire bindings let us associate a Firebase URL with a model or collection of models. These models will represent the data that will be transparently kept in sync across all clients currently using our app.

Angular’s two-way data binding keeps the DOM synced to JavaScript variables in memory, and Firebase stores those changes and sends them to all listening clients in real-time.

 We get this data synchronization without changing how we build our angular app. Very cool!

2. Include the Firebase and AngularFire libraries

Using AngularFire is as simple as including two JavaScript files in our HTML file, one for Firebase and another for AngularFire.

We’ll need to use Firebase’s CDN, so at the top of our index.html file we’ll add the following two lines:

1 <script src="https://cdn.firebase.com/v0/firebase.js"></script>
2 <script src="https://cdn.firebase.com/libs/angularfire/0.5.0-rc1/angularfire.js">\
3 </script>

3. Add Firebase as a dependency

As usual with any application libraries, we’ll need to set the firebase library as a dependency for our module. This tells the rest of our application that we can use the firebase bindings in our app:

1 angular.module("myapp", ["firebase"]);

4. Bind a model to a Firebase URL

By declaring Firebase as a dependency, we now have access to the $firebase service, which allows us to inject it as a dependency in our controllers and services.

1 angular.module('myapp', ['firebase'])
2 .controller("MyCtrl", ["$scope", "$firebase",
3 function($scope, $firebase) {
4 // Our controller definition goes here
5 }
6]);

The $firebase service takes a single argument: a Firebase reference.

FirebaseRef (Firebase reference)

The Firebase reference tells $firebase where the data is stored and how to connect. The $firebase service handles the synchronization with Angular, and is where we’ll call methods to save our changes.

This object has several methods we’ll use to interact with our remote data. These methods, detailed below are all prefixed with the $ symbol, such as $add() and $save() and are available on this object.

 Note that no changes to the object will result in changes made to the remote data.

To synchronize a local object model to the remote Firebase reference, we’ll use the service method and pass it an instance of the Firebase object. For example, to synchronize the $scope.items model to our ng-newsletter items, we’ll run the following method:

1 angular.module('myApp')
2 .controller("MyCtrl", function($scope, $firebase) {
3 // Firebase URL
4 var URL = "https://ng-newsletter.firebase.com";
5 // Synchronizing the items on our $scope
6 $scope.items = $firebase(new Firebase(URL + '/items'));
7 });

Now, we can simply interact with the $scope.items object to synchronize our Angular models with Firebase.

Data Synchronization

We can synchronize our data back to Firebase by using the following methods provided by the $firebase object.

$add(value)

The $add method takes a single argument of any type. It will append this value as a member of a chronologically ordered list. We can think of this like we’re calling .push(value) on to the Firebase reference array.

 Note that the Firebase reference object is not really an array, but we can act as though it is.

For example, we can add the string “bar” to the Firebase reference located at the /foo endpoint:

1 $scope.items.$add({foo: "bar"});

$remove([key])

The $remove method removes remote child references from Firebase. It takes a single optional argument:

key (optional string)

If a key argument (as a string) is provided, the $remove() method will remove the child referenced by that key. If no key is provided, the entire remote object will be removed.

1 $scope.items.$remove("foo"); // Remove the child named "foo".
2 $scope.items.$remove(); // Remove the entire object.

$save([key])

The $save method synchronizes all changes to the local elements with the Firebase data store and pushes them instantly to all listening clients. It takes a single argument:

key (optional string)

If the key argument (string) is provided, the $save() method will save changes made to the child element referenced by the key to Firebase. If no key is provided to the $save() method, then all local changes made to the object will be persisted to Firebase.

 The $save() method is most commonly used to save any local changes made to the model.

1 $scope.items.foo = "baz";
2 $scope.items.$save("foo"); // new Firebase(URL + "/foo") now contains "baz".

$child(key)

The $child() method creates a new $firebase object for a child referenced by the provided key. The method takes a single argument:

key (string)

The key string is used to reference the newly created child.

1 var child = $scope.items.$child("foo");
2 child.$remove(); // Equivalent to calling $scope.items.$remove("foo");

$set(value)

The $set() method overwrites the remote value for this object to newValue. The local object will also be subsequently updated to this new value.

It takes a single argument:

value (string)

The value argument is the new value of the local object. The value will overwrite the old value, and will be subsequently updated to this new value.

1 $scope.items.$set({bar: "baz"}); // new Firebase(URL + "/foo") is now null.

Ordering in AngularFire

If we want to sort our remote objects, rather than simply sorting locally with Angular’s orderBy filter, we can set the $priority field on a record before calling $save().

1 $scope.items.foo.$priority = 2;
2 $scope.items.$save("foo"); // new Firebase(URL + "foo")'s priority is now 2.

By default, the $firebase service returns a simple JavaScript object. We can convert this object into an array that respects order simply by using the orderByPriority filter.

This filter turns the object returned by the $firebase service into an array and orders by the priority definition defined by Firebase. Each object in the new array will get an $id property defined on it which references the keyname of the object.

1 <ul ng-repeat="item in items | orderByPriority">
2
3 <input type="text" id="{{item.$id}}" ng-model="item.$priority"/>
4 {{item.name}}
5
6

Firebase events

Firebase fires two types of events that we can use to handle custom logic from within our app. We can use the $on() method to attach event handlers for these two event types:

loaded

The loaded event is fired when initial data is received from Firebase. It is fired once and only once.

1 $scope.items.$on('loaded', function() {
2 console.log("Items loaded");
3 });

change

The change event is fired whenever there is a remote change in the data applied to the local object. For instance, this happens if there is a new task added by another user to our task list.

1 $scope.items.$on('change', function() {
2 console.log("A change is afoot");
3 });

Implicit Synchronization

To add automatic, implicit synchronization with a $scope variable, we can call the $bind() method on the object returned by the $firebase service.

The $bind() method automatically establishes a 3-way binding so we don’t need to explicitly save data to Firebase using the $add() or $save() methods.

1 $scope.items.$bind($scope, "remoteItems");
2 $scope.remoteItems.bar = "foo"; // new Firebase(URL + "/bar") is now "foo".

The $bind() method returns a promise, which will be resolved when the initial data from the server has been received. The promise will be resolved with an unbind function, which will disassociate the 3-way binding when called.

1 $scope.items.$bind($scope, "remote")
2 .then(function(unbind) {
3 unbind();
4 $scope.remote.bar = "foo"; // No changes have been made to the remote data.
5 });

The $bind method returns a promise, which will be resolved when the initial data from the server has been received. The promise will be resolved with an unbind function, which will disassociate the 3-way binding when called. This is useful for optimizing our site and removing unnecessary watches.

Authentication with AngularFire

Firebase provides a simple, client-side authentication strategy out of the box.

Using Firebase’s Simple Login or Custom Login methods, we can easily add user authentication to our application with AngularFire.

Custom Login is most appropriate to use if we have our own server where we want to control our own authentication, or we want to integrate existing authentication with Firebase.

If we want to use Firebase to manage all of our authentication, we can use Simple Login, which supports Facebook, Twitter, GitHub, Persona, and Email/Password authentication.

By defining Firebase as a dependency in our app’s module, we have access to the $firebaseAuth service in our controllers and services.

1 angular.module('myApp')
2 .controller("MyAuthCtrl", function($scope, $firebaseAuth) {
3 // Define our controller here
4 });

The $firebaseAuth service method takes two arguments: a Firebase reference, and an optional object with options. The object can contain the following properties to customize how the authentication works with Firebase:

	path - the path to which the user will be redirected if the authRequired property is set to true in the $routeProvider and the user is not logged in.

 	simple - $firebaseAuth requires inclusion of the firebase-simple-login.js file by default. If this simple value is set to false, this requirement is waived, but only custom login functionality will be enabled and we cannot use simple auth.

 	callback - a function that will be called when there is a change in authentication state. We can use this callback as an alternative to events fired on $rootScope, which is the recommended way to handle changes in auth state.

1 angular.module('myApp')
2 .controller("MyAuthCtrl", function($scope, $firebaseAuth) {
3 var ref = new Firebase(URL);
4 $scope.auth = $firebaseAuth(ref);
5 // $scope.auth.user is null until the user logs in.
6 });

The object returned by $firebaseAuth() contains a single property named user. user will be set to null if the user is logged out and will change to an object containing the user’s details once they are logged in. We’ll cover detecting logins below.

 The contents of the user’s detail object will vary depending upon the authentication mechanism used, but at the very least, it will contain a user id and provider name.

Authentication Events

With the AngularFire authentication, we have access to several methods for changing a user’s authentication state. These methods are $login(), $logout(), and $createUser().

Authentication state in AngularFire is considered global and each of the authentication methods below will be broadcast on the $rootScope. Since nearly all scopes inherit from $rootScope, we can call $scope.on(...) from any controller.

 Global authentication means that we cannot have multiple users logged into the same instance of the application at the same time. For example, global authentication prevents two users from being logged into GMail at the same time in the same browser instance.

$firebaseAuth:login

This event is triggered when a user successfully logs in. This event fires with two arguments: an event and user object.

1 $rootScope.$on("$firebaseAuth:login", function(evt, user) {
2 console.log("User " + user.id + " successfully logged in!");
3 });

$firebaseAuth:logout

The logout event is triggered when a user logs out. The event is fired with an event argument.

1 $rootScope.$on("$firebaseAuth:logout", function(evt) {
2 console.log("User logged out!");
3 });

$firebaseAuth:error

The error event is triggered when there was error during either calling $login() or $logout(). This event will be fired with a single argument, the error.

$login(token, [options])

We’ll use the $login() method to login a user. We’ll usually use this method when a user clicks a login button, like the following:

1 <a href="#"
2 ng-hide="auth.user"
3 ng-click="auth.$login('persona')">Login

The $login() function takes up to two arguments:

tokenOrProvider (string/JWT token)

If we are using the Firebase Simple Login, we can simply pass in a provider name, such as ‘facebook’, or ‘persona’. If we want to use the Custom Login flow, then we’ll need to pass in a valid JWT token instead.

options (object)

The options argument is only used with Simple Login, where the provided options will be passed as-is to the Simple Login method.

For a “password” provider, we’ll want to provide a username and password as an object.

 For more information about the user object, read the Firebase documentation on AngularFire.com.

$logout()

The $logout() method will log out the current user. It takes no arguments.

The $firebaseAuth:logout event will be fired, and the user property will be set to null after the logout is completed. This method is typically attached to a logout button:

1
2 {{auth.user.name}} | Logout
3

$createUser()

The $createUser() method is useful when we are using the “password” provider with Firebase Simple Login.

The $createUser() method takes three arguments:

email (string)

The email to create the user with.

password (string)

The password is the password the user will be created with.

callback (function)

The callback method will be called after the $createUser() has run. It will be called with two arguments: error and user. If there was an error in the $createUser() method, the error will contain the error message and user will be null. If the error is null, then the user will be defined.

1 auth.createUser(email, password, function(error, user) {
2 if (!error) {
3 console.log('User Id: ' + user.id + ', Email: ' + user.email);
4 }
5 });

Firebase makes it easy to wire up a back-end to our Angular app without having to worry about setting up a server or writing a single line of back-end code. AngularFire enables us to create complex, real-time applications that synchronize immediately between our application’s model and data stored in Firebase.

To learn more about AngularFire, the source code is available on Github: https://github.com/firebase/angularFire.

To get an AngularFire app up and running in minutes, clone the angularFire-seed repo.

Beyond AngularFire

AngularFire is a great wrapper for interacting with Firebase, but you can certainly interact directly with the Firebase SDK from Angular for more complex operations. Check out the Firebase tutorial to learn more about the advanced capabilities of this sophisticated real-time platform.

Testing

Testing

AngularJS is a framework that encourages writing clean and solid testable code. This is one of the most useful features of AngularJS that you get out of the box.

The Angular’s team emphasis on testing is so strong that they built a test runner to make the process easier. In their words:

 JavaScript is a dynamically typed language which comes with great power of expression, but it also comes with almost no help from the compiler. For this reason we feel very strongly that any code written in JavaScript needs to come with a strong set of tests. We have built many features into Angular which makes testing your Angular applications easy. So there is no excuse for not testing.

Why test?

When building any non-trivial application for any business purpose beyond prototyping (and even then) it’s important to be confident about our code. When we have tests backing up our code-base, we can discretely know that our code is working as intended or not.

Bugs in our code are inevitable and without tests it’s difficult to know where they are, thus tests make it easy to isolate and eliminate them. They make it easy to on-board other developers and provide working documentation about the code.

Testing is essential for understanding what is happening in our app.

Testing strategies

When building a testing suit to build Angular apps, it’s always good to have a strategy for how and what we are going to test in our app. If we end up testing nothing or meaningless tests, we’ll have nothing real in terms of tests. Conversely, if we test everything we can possibly think of, we’ll end up spending more time writing tests and fixing minor bugs in our test code than we will on our app.

It’s important to be realistic in terms of what value we will get out of the tests we do write and about what we should be testing.

At the end of the day, our tests will be a tool for us to gauge both the health of our app and a measuring stick to tell us if we’ve broken our code when introducing new functionality.

Getting started testing

One of the major hurdles in getting started with testing is having a test runner that runs tests on our code. JavaScript testing is also a bit more difficult as it requires us to build automation into browsers.

Building a development testing suite is difficult enough, but what about supporting continuous integration so that new deployments can be automated and we can be confident about the quality of the code before making a new one?

 Continuous integration is a practice in software engineering of merging development working copies of a shared mainline several times a day and running the test suite upon update

Karma is a testing tool that was built from the ground-up to remove the burden of setting up testing and allow us to focus on building our core application logic.

Karma spawns a browser instance (or multiple different browser instances) and runs the tests against the different instances to see if they pass different tests. Karma communicates with the browsers through socket.io, which enables karma to keep in constant contact. Thus, it provides real-time feedback as to what tests are running and gives us a human-readable output as to which tests pass and which ones fail or timeout.

Karma is capable of communicating with several different browsers natively and removes the need for us to need to manually test our code in different browsers. For example, it can run the tests in Chrome, IE and Firefox and spit out the results to your console. We can even hook up to our own native devices (yes, like an iphone or ipad) to test our code.

Types of AngularJS tests

There are several different ways to test our angular apps, depending upon what level of granularity we want to focus on and what features we want to target.

Unit testing

We can focus on building our tests to isolate specific, isolated components of our code. This is called “unit testing” where we test specific units of code for all sorts of different input, at different stages and under different conditions.

Unit testing is specifically for testing small, individual units of code, single functions or small and contained function interactions. It is not about testing large feature-sets.

A tricky part about unit testing is setting up the isolation of one piece of logic to be able to test it. We’ll discuss strategies of accomplishing this isolation in this chapter.

When Unit testing is the right choice

When we’re writing our functional code, we’re going to create little components of functionality. For instance, in building an application that handles live-filter of elements in a list, we’re going to build the filtering functionality.

This specific filter functionality is a ‘unit’ of functionality that we’ll need to implement this feature. To be confident that this filter functionality has been implemented and is working as expected, we’ll need to isolate the component and test it for different inputs.

 Imagine we’re building a rocket ship. We’ll want to test each individual part of the ship, the thrusters, the joystick controls, the oxygen system to verify the ship in general is working how we expect it to work.

E2E testing

On the other hand, we can blackbox test our application, otherwise known as end-to-end (or e2e) test where we test the application from the point of view that we are an end-user and know nothing about the underlying components of the system. This is great for testing large features of the application.

E2E testing works well for testing the user interaction with the page, without forcing us to refresh the page manually and test with the browser.

E2E testing is nothing new and there are great tools that enable us to set up automated browser testing. We can use tools like PhantomJS or CasperJS for headless browser testing (without opening a browser) or tools such as Karma that will open a real browser and perform all the tests in an iframe.

When End to End testing is the right choice

When we’re writing features of functionality, it’s always a good idea to write a test to walk the path of our user. End-to-end testing is great as it maps out the real experiences our users will take when using our application.

For instance, building a user login flow, we test that the user is logged in and redirected to their homepage. We don’t worry about how the user is logged in, just that they are logged in and directed to the proper place.

 Imagine we’re building a rocket ship. End-to-end testing doesn’t care about the engines or the landing gear, it cares that the rocket takes off and flies our astronauts to space.

Both Unit testing and E2E testing are supported out-of-the-box with the Karma test runner.

 	
 [image: information]
 	
 Note that writing unit tests instead of E2E tests will allow our tests to run super fast. Setting up our tests to run synchronously and using mocking libraries will greatly speed up our testing as well.

Getting started

In order to run our tests, we’ll need to install the karma test runner. At this point in the book, you’ll likely already have them available to you, but you’ll need to make sure you have NodeJS and NPM installed. Once you do, to install the karma tool, we’ll use the npm command:

1 $ npm install -g karma

 	
 [image: tip]
 	
 To get npm installed, we’ll be saving our dependencies in the package.json file that lists our dependencies. To set up package.json, with npm installed simply run npm init and walk through the wizard.

To start testing your application, you’ll need to set up a reasonable structure for both your application code as well as for your test code.

The file structure that we recommend is storing your application files in the following format:

 1 app/
 2 index.html
 3 js/
 4 app.js
 5 controllers.js
 6 directives.js
 7 services.js
 8 filters.js
 9 views/
10 home.html
11 dashboard.html
12 calendar.html
13 test/
14 karma-e2e.conf.js
15 karma.conf.js
16 lib/
17 angular-mocks.js
18 helpers.js
19 unit/
20 e2e/

The app/ layout is standard, where we divide our application code. The test/ directory has our tests nested in the appropriate directories that reflect the type of test, unit/ or e2e/.

There are two different karma configuration files in the test/ directory. Each of these files contains the specific type of test that they are going to be running. As we walk through each type of test, we’ll discuss how each karma configuration should look and how to customize them for our use.

Running a karma test is simple: karma start path/to/karma.config.js. When the test runner starts up, it will start the browsers listed in the karma config file.

 [image: Running karma with Chrome and Safari]Running karma with Chrome and Safari

By default, if not otherwise specified Karma will watch all the files listed in the karma configuration. Anytime that a file changes, karma will run the tests.

Initializing Karma config file

Karma gives us a generator to help us build configuration files. This generator will ask a few questions about how we want our configuration set up. Each question suggests a default value so it is possible to simply accept all the default values, which we’ll do in a moment.

 [image: Karma init]Karma init

The process of setting up testing with unit tests and e2e tests is largely the same. We’ll use the karma init generator to create the karma.conf.js files.

Setting up unit testing

First, run the karma init command with the path of your test file. In this case, we’ll build our karma config in our tests directory:

1 $ karma init test/karma.conf.js

Unit tests need all of the dependencies available to run our tests against. When building our unit tests with the karma generator, it’s important that our unit tests contain references to code for:

	a testing framework (choose one):
 	jasmine (default)

 	mocha

 	qunit

 	custom test configuration (needed w/ mocha)

 	any vendor required code

 	our app-specific code

 	our test code

 	angular-mocks.js library for mocking

Unit tests need references to all of the app code that we’ll be testing as well as all of the tests that we’ll be writing.

For instance, a sample unit-test karma config file might look like. This is is similar to the one we will generate, with comments removed for simplicity:

 1 module.exports = function(config) {
 2 config.set({
 3 basePath: '..',
 4 frameworks: ['jasmine'],
 5 files: [
 6 'lib/angular.js',
 7 'lib/angular-route.js',
 8 'test/lib/angular-mocks.js',
 9 'js/**/*.js',
10 'test/unit/**/*.js'
11],
12 exclude: [],
13 port: 8080,
14 logLevel: config.LOG_INFO,
15 autoWatch: true,
16 browsers: ['Safari'],
17 singleRun: false
18 });
19 };

Once this is set, we can run our unit tests like so:

1 $ karma run test/karma.conf.js

Alternatively, if you want the tests to run anytime the code changes (if you set autoWatch to true).

1 $ karma start test/karma.conf.js

Setting up e2e testing

To set up end to end testing, we’ll run the karma generator with the path of our e2e karma config file.

1 $ karma init test/karma-e2e.conf.js

The e2e tests will be using the ng-scenario framework. Unlike unit tests, we do not need to reference all of our library code as the e2e tests run against our server. It simply needs to load all of the tests in the browser.

A sample karma config for e2e tests might look like:

 1 module.exports = function(config) {
 2 config.set({
 3 basePath: '..',
 4 frameworks: ['ng-scenario'],
 5 files: [
 6 'test/e2e/**/*.js'
 7],
 8 exclude: [],
 9 port: 8080,
10 logLevel: config.LOG_INFO,
11 autoWatch: false,
12 browsers: ['Chrome'],
13 singleRun: false,
14 urlRoot: '/_karma_/',
15 proxies: {
16 '/': 'http://localhost:9000/'
17 }
18 });
19 };

Once this is set, we can run our unit tests like so:

1 $ karma run test/karma-e2e.conf.js

Alternatively, if you want the tests to run anytime the code changes (if you set autoWatch to true).

1 $ karma start test/karma-e2e.conf.js

Configuration options

Karma includes a lot of configuration options for you to choose and customize testing the way you like it.

framework

The generator will ask us which testing framework we’d like to use for tests. Jasmine is the default testing framework, although it supports Mocha, QUnit, Jasmine, and others by default.

These testing frameworks will require an additional npm library to be installed. For instance, to use the jasmine as a framework, you’ll need to install the jasmine plugin.

1 $ npm install --save-dev karma-jasmine

 	
 [image: information]
 	
 Using the --save-dev flag to write the dependency to the package.json file and place it under devDependencies.

In the configuration file, this takes an array, which allows us to use multiple frameworks. Typically we’ll only use one, so this is usually going to be set as ['jasmine'] or ['mocha'].

For example:

1 frameworks: ['jasmine'],

RequireJS

If the project is using the RequireJS library, then select ‘yes’ for the question asking to include RequireJS. If your project does include it, then instead of listing all of the files in your karma config (which we’ll see momentarily), you’ll include your single test file which will be responsible for loading the specific modules.

RequireJS is a javascript file and module loader that’s specifically designed for the browser. It enables us to write javascript libraries that we can export a library and use the name of the module to set up an expectation that it will be available when our module loads.

It’s main benefits are:

	It sets up an import process

 	It can load nested dependencies

 	It enables easy packaging dependencies

In effect, it allows us to define javascript through modules and require those modules in our javascript. For instance:

1 define(['jquery', 'underscopre'],
2 function($, _) {
3 // $ references jQuery
4 // _ references underscore
5 });

For more information, see RequireJS for more information on how to set up testing.

Browser captures

The karma generator will ask which browsers you want to start automatically and capture their test results. Upon termination of the test runner, karma will shut down these browsers as well. You can also test any browser by opening the URL that karma’s web server is listening on (defaults to http://localhost:9876), something worth keeping in mind if you want to test Internet Explorer from another machine(or VM) on your local network.

Browser captures require an additional plugins to be installed to launch and run the browsers using Karma. These plugins can be installed using npm. To enable Chrome, you’ll need to install the chrome launcher plugin, like so:

1 $ npm install --save-dev karma-chrome-launcher

If you want to use safari, you’ll need to install the safari launcher, firefox, the firefox launcher, and so on.

1 browsers: ['Chrome', 'Safari'],

Source and test files

The karma generator will ask where your javascript source and test files are located. This array can contain either simple strings and/or objects.

Strings can be patterns, such as app/js/**/*.js or specific file locations app/js/vendor/angular/angular.js. These are files and patterns that are relative to the basePath.

Files can also be specified using an object(instead of a string), which is useful when we want to configure certain aspects of a given file path or pattern. In the following example, this object tells karma to watch the file public/js/watch-me.js for changes but not to include the file on the page or serve it to a URL:

1 {pattern: 'public/js/watch-me.js', watched: true, included: false, served: false}

Note that the reason for using an object is to provide fine grain control over a file or file pattern, thus the pattern property is required. The other properties, such as included have defaults, and therefore only need to be set when your pattern deviates from the norm.

Let’s discuss each option and its defaults in detail:

pattern

The pattern to match files, this can be either a path to a single file or a pattern of files in the same manner that strings are listed above.

watched

This boolean specifies that this file will be watched or not if karma is set up to use autoWatch. If it is listed as true, then the karma will run the tests when this file is changed. If it is set to false, then they will not be run.

If not listed as a property in the object then the files listed in this object will be watched by default (true).

included

This boolean sets the file to be loaded using the <script> tag in the browser. If this is set to true, then the files will be loaded by the browser. If set to false then you are responsible for loading them manually. This is generally used in conjunction with RequireJS.

By default, files are set to be included with the <script> tag (true).

served

This boolean sets the file to be served by the karma webserver. If it is set to true, then the file will be accessible over the webserver. If it’s set to false, then it will not be.

By default, this is set to true and thus the files will be set to be able to be fetched over the webserver.

Ordering

The order that files are listed matters, so we’ll list our libraries before we list our application files as they’ll need to be required. If a pattern is listed, then the files are sorted in alphabetical order and included.

Every file that is included is only included once, so if a file is matched more than once in a pattern match it is only included once.

An full example of the files property:

 1 files: [
 2 // simple strings
 3 // we can target a single file
 4 'js/app/vendor/angular/angular.js',
 5 // or we can target a glob of files in a pattern
 6 'js/app/*.js',
 7 // objects
 8 // when the index.html file changes, we won't
 9 // run the tests
10 {pattern: 'public/index.html', watched: false},
11 // And we can set the file to not be included
12 // but still be watched
13 {pattern: 'public/index.html', included: false}
14]

exclude

It will ask if there are any files that you do not want to include in loading the tests. This array is useful if you are using RequireJS for example.

1 exclude: [
2 'public/index.html'
3]

basePath

The basePath is the root path location that will be used to resolve relative paths defined in the files and exclude properties. If the basePath is a relative path, then it will be resolved relative to where the karma configuration file is (__dirname).

1 basePath: '..',

autoWatch

Setting autoWatch to true will trigger karma to execute the tests whenever the files in files are changed. It is useful to set this to falsewhen using a continuous integration server where watching file changes are unnecessary.

1 autoWatch: true,

captureTimeout

If the browser loads in more than the captureTimeout (defaults to 60 seconds or 60000 ms), then karma will kill the process and try again. If it fails after 3 tries, then karma will give up trying to launch the browser.

1 captureTimeout: 60000

colors

Karma’s default output will include color. If you do not want to include color output in your terminal, you can disable this by setting the colors property to false:

1 colors: true,

hostname

The hostname by default is localhost, but if you want to change it, you can set the hostname property.

1 hostname: '127.0.0.1',

logLevel

When something goes wrong or unexpected with Karma, it’s useful to look at more detailed information from Karma. We can set the level of detailed output by setting the logLevel property. This is also useful on the other end when using a continuous integration server, it can be optimal to disable output entirely.

The possible log values are:

	config.LOG_DISABLE

 	config.LOG_ERROR

 	config.LOG_WARN

 	config.LOG_INFO

 	config.LOG_DEBUG

1 logLevel: config.LOG_INFO,

port

The default port for karma’s webserver to launch and listen on is 9876. It’s possible to customize the port by setting it in the config file.

1 port: 9875,

preprocessors

It’s possible to tell Karma to preprocess files before the tests are run. This is useful for using a language like Coffeescript to write tests in and not need to process these files manually.

Preprocessors other than coffeescript, which is baked-in by default require additional plugins to run via npm.

The available preprocessors for Karma that are included are:

	coffeescript

 	html2js

Other plugins are available as preprocessors and can be included by a plugin are:

	coverage

 	ng-html2js

 	ember

To include one or more of these, install them with the npm command:

1 $ npm install karma-coverage --save-dev

To configure which preprocessors are to be used, set them in the config file map. By default, this is set to {'**/*coffee': 'coffee'}.

1 preprocessors: {
2 '**/*.coffee': ['coffee']
3 }

It’s possible to configure some of the preprocessors as well. Configuration is dependent upon the plugin we’re using. To configure coffeescript, for example:

1 coffeePreprocessor: {
2 options: { bare: true }
3 }

You can also customize the preprocessors using a customPreprocessor property:

1 customPreprocessor: {
2 mini_coffee: {
3 base: 'coffee',
4 options: { bare: true }
5 }
6 }

proxies

Karma will set up http proxies for us so that when we fetch a route it can fetch it off a remote server. This is useful and required for e2e tests (that use a server).

This object will be a list of key-value pairs that point from a path to a remote server.

1 proxies: {
2 '/': 'http://localhost:9000'
3 }

reporters

Reporting from Karma is able to be customized as well. It’s possible to set reporters to set all sorts of output in the terminal to display useful information about the state of the tests.

By default, this is set to ['progress'], which will report the progress of the tests in human readable form. By default, progress and dots are included by default as reporters for karma. It’s possible to include other reporters as well through plugins.

You can include other reporters, such as growl and coverage via npm plugins. These plugins can be installed using npm:

1 $ npm install karma-[plugin-name] --save-dev

singleRun

If this boolean is set to true, then Karma will run the tests once for all the configured browsers and exit with an exit code of 0 if they all pass and 1 if any tests fail.

This is particularly useful when running the tests on a continuous integration server.

urlRoot

This is the base url where Karma runs. Any of the urls Karma uses gets prefixed with the urlRoot parameter. It’s a good idea to use this when using a proxy so it doesn’t collide with existing functions on the server.

Using RequireJS

To use RequireJS with Karma, we’ll need an additional file after our karma.conf.js config file, the test-main.js file.

	karma.conf.js - responsible for configuring Karma (as we’ve seen)

 	test-main.js - responsible for configuring Require.js for the tests

karma.conf.js

We’ll configure karma like normal with the karma configuration file generator:

1 $ karma init test/karma.conf.js

When the question to use Require.js prompts to use Require.js, select yes.

When it asks which files you want to be loaded by default, you’ll need to select all of the files that are not loaded by Require.js. It’s safe to only include the test/test-main.js file, which we’ll be creating shortly.

When we list the source and tests files, we’re choosing all of the files we want to load with Require.js. We should list every file that we’re loading with Require.js. This includes all external libraries, all of our code and all of our test files.

These files will need to be configured with the configuration object and set to not be included by default.

At this point, our karma.conf.js should be:

 1 module.exports = function(config) {
 2 config.set({
 3 basePath: '..',
 4 frameworks: ['jasmine', 'requirejs'],
 5 files: [
 6 {pattern: 'app/lib/angular.js', included: false},
 7 {pattern: 'app/lib/angular-route.js', included: false},
 8 {pattern: 'app/lib/angular-mocks.js', included: false},
 9 {pattern: 'app/js/**/*.js', included: false},
10 {pattern: 'test/**/*.js', included: false}
11 {pattern: 'test/lib/**/*.js', included: false},
12 'test/test-main.js'
13],
14 exclude: [
15 'js/main.js'
16],
17 reporters: ['progress'],
18 port: 9876,
19 colors: true,
20 logLevel: config.LOG_INFO,
21 autoWatch: true,
22 browsers: ['Chrome'],
23 captureTimeout: 60000,
24 singleRun: false
25 });
26 };

 	
 [image: information]
 	
 Notice that we’re excluding our main.js file, the application file that starts the application.

Since karma serves files under the app/js directory, we’re configuring karma’s file server with a starting context for modules that load with a relative path. _Since we want our baseUrl for our tests to be in the same folder as our source files, we’ll need to set the basePath to the local directory (.).

test/test-main.js

Our test-main.js file will operate as a substitute for our main application file, providing us with the ability to reference our test files without actually kicking off our app.

Karma will include all the files in the array window.__karma__.files, so we’ll find our test files from here. After we’ve found our tests, we’ll configure our RequireJS like normal:

 1 var tests = [];
 2 for (var file in window.__karma__.files) {
 3 if (window.__karma__.files.hasOwnProperty(file)) {
 4 if (/Spec\.js$/.test(file)) {
 5 tests.push(file);
 6 }}}
 7
 8 requirejs.config({
 9 baseUrl: 'app',
10 paths: {
11 'jquery': 'lib/jquery',
12 'angular': 'lib/angular',
13 'angularRoute': 'lib/angular-route',
14 'angularMocks': 'lib/angular-mocks',
15 },
16 shim: {
17 'underscore': {
18 exports: '_'
19 }
20 },
21
22 // ask Require.js to load these files (all our tests)
23 deps: tests,
24 // start test run, once Require.js is done
25 callback: window.__karma__.start
26 });

Our tests will look a bit different from those that do not use RequireJS by default. We can simply use RequireJS like normal and wrap our tests in define(). For example:

 1 define([
 2 'app', 'jquery', 'angular',
 3 'angular', 'angularRoute', 'angularMocks'
 4],
 5 function() {
 6 describe('UnitTest: App', function() {
 7 // just like normal
 8 it('is defined', function() {
 9 expect(_.size([1,2,3])).toEqual(3);
10 });
11 });
12 });

Jasmine

In this book, we’re going to cover the Jasmine testing framework. Although Karma does support multiple testing frameworks, the default option for Karma is Jasmine.

Jasmine is a Behavior-driven development framework for testing JavaScript code. Since we’ll be working closely with the Jasmine syntax heavily, we’ll run through an overview of how to write Jasmine-based test suites.

Spec suite

At the heart of a Jasmine suite is the describe function. This is a global function defined in the Jasmine suite, so we can call it directly from the test.

The describe() function takes two parameters, a string and a function. The string is a name or description of the spec suite we’re setting up. The function encapsulates the test suite.

1 describe('Unit test: MainCtrl', function() {
2 });

We can nest these describe() functions so that we can create a test tree that executes the different conditions that we’ll set up throughout the tests:

1 describe('Unit test: MainCtrl', function() {
2 describe('index method', function() {
3 // Specs go in here
4 });
5 });

It’s a good idea to group related specs to each other. We’ll use the describe() function to do this. When each describe() block runs, the strings will be concatenated together along with the spec’s name. Thus, the above example’s title would become: “Unit test: MainController index method”.

These describe block titles will then be appended to the spec title. This is specifically intended on allowing us to read our specs as full sentences so it’s important that we name our tests in an English readable fashion.

Defining a spec

Defining a spec is done by calling the it() function. This too is a global function that is defined in the Jasmine test suite, so we can call it directly from our tests as well.

The it() function takes two arguments as well. A string title or description of the spec and a function that contains one or more expectations to test our code.

These expectations are functions that, when executed evaluate to true or false. A test with all true expectations is considered a passing spec, whereas a spec with one or more expectations that evaluate to false is considered a failing test.

A simple test might look like:

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 expect(true).toBe(true);
4 });
5 });

This single spec’s title, as appended to the describe() title becomes: “A spec suite contains a passing spec.”

Expectations

When testing our app, we’ll want to assert that conditions are how we expect them to be at different stages of the app. Tests we’ll write will likely be able to be red like so “if we click on this button, then we expect this result”. For instance, “If we navigate to the home page, then we expect the welcome message to be rendered.”

Expectations are set up with the expect() function. The expect() function takes a single value argument. This argument is called the actual value.

To set up an expectation, we’ll chain a matcher function that takes a single value argument. This argument is the expected value.

These matcher functions implements a boolean comparison between the actual value and the expected value. We can create a negation of the test by calling not before calling the matcher.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 expect(true).toBe(true);
4 });
5 it('contains another passing spec', function() {
6 expect(false).not.toBe(true);
7 });
8 });

Jasmine comes built-in with a large set of matchers that we’ll use throughout testing our app. It also is incredibly easy to write a custom matcher.

Included matchers

toBe

The toBe() matcher compares values with the javascript operator: ===.

1 describe('A spec suite', function() {
2 it('contains passing specs', function() {
3 var value = 10,
4 another_value = value;
5 expect(value).toBe(another_value);
6 expect(value).not.toBe(null);
7 });
8 });

toEqual

The toEqual() matcher compares values and works for simple literals and variables.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = 10;
4 expect(value).toEqual(10);
5 });
6 });

toMatch

The toMatch() matcher matches strings with a regular expression.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = "<h2>Header element: welcome</h2>";
4 expect(value).toMatch(/welcome/);
5 expect(value).toMatch('welcome');
6 expect(value).not.toMatch('goodbye');
7 });
8 });

toBeDefined

The toBeDefined() matcher compares values against undefined.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = 10,
4 undefined_value = undefined;
5 expect(value).toBeDefined();
6 expect(undefined_value).not.toBeDefined();
7 });
8 });

toBeUndefined

The toBeUndefined() matcher does the exact opposite as the toBeDefined() matcher.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = 10,
4 undefined_value = undefined;
5 expect(undefined_value).toBeUndefined();
6 expect(value).not.toBeUndefined();
7 });
8 });

toBeNull

The toBeNull() matcher compares values against the null value.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = null,
4 not_null_value = 10;
5 expect(value).toBeNull();
6 expect(not_null_value).not.toBeNull();
7 });
8 });

toBeTruthy

The toBeTruthy() matcher compares values for boolean casting of a truthy value.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = 10,
4 undefined_value;
5 expect(value).toBeTruthy();
6 expect(undefined_value).not.toBeTruthy();
7 });
8 });

toBeFalsy

The toBeFalsy() matcher compares values for boolean casting testing of a falsy value.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = 10,
4 undefined_value;
5 expect(undefined_value).toBeFalsy();
6 expect(value).not.toBeFalsy();
7 });
8 });

toContain

The toContain() matcher looks for an item in an array.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var arr = [1,2,3,4];
4 expect(arr).toContain(4);
5 expect(arr).not.toContain(12);
6 });
7 });

toBeLessThan

The toBeLessThan() matcher mathematically compares a value to be less than the expected.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = 10;
4 expect(value).toBeLessThan(20);
5 expect(value).not.toBeLessThan(5);
6 });
7 });

toBeGreaterThan

The toBeGreaterThan() matcher mathematically compares a value to be more than expected.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = 30;
4 expect(value).toBeGreaterThan(40);
5 expect(value).not.toBeGreaterThan(20);
6 });
7 });

toBeCloseTo

The toBeCloseTo() matcher compares values to be close to based off a specific precision comparison.

1 describe('A spec suite', function() {
2 it('contains a passing spec', function() {
3 var value = 30.02;
4 expect(value).toBeCloseTo(30, 0);
5 expect(value).not.toBeCloseTo(20, 2);
6 });
7 });

toThrow

The toThrow() matcher tests if a function throws an exception or not.

 1 describe('A spec suite', function() {
 2 it('contains a passing spec', function() {
 3 expect(function() {
 4 return a + 10;
 5 }).toThrow();
 6 expect(function() {
 7 return 2 + 10;
 8 }).not.toThrow();
 9 });
10 });

Creating custom matchers

Jasmine makes it incredibly easy to create our own matchers for more complex situations in our code. To create a matcher, inside a jasmine block, we can call the addMatcher() function with a function that takes the value.

1 describe('A spec suite', function() {
2 this.addMatchers({
3 toBeLessThanOrEqual: function(expected) {
4 return this.actual <= expected;
5 }
6 });
7 });

We can then call this toBeLessThanOrEqual() matcher in any of our tests that are defined in the test suite.

Setup and teardown

Rather than setting up our test conditions manually every time in our tests, we can use the beforeEach method to run a group of setup functions. The beforeEach() function takes a single argument, a function that is called once before each spec is run. This can be used in a describe block, like so:

 1 describe('A spec suite', function() {
 2 var message;
 3 beforeEach(function() {
 4 message = "hello ";
 5 });
 6 it('should say hello world', function() {
 7 expect(message + "world").toEqual("hello world");
 8 });
 9 it('should say hello ari', function() {
10 expect(message + "ari").toEqual("hello ari");
11 });
12 });

We can also reset conditions, such as clear a database or flush all requests from a mock using the afterEach() function. Similarly to the beforeEach() function, it takes a single argument, a function to be executed after each spec is run.

 1 describe('A spec suite', function() {
 2 var count;
 3 afterEach(function() {
 4 count = 0;
 5 });
 6 it('should add one to count', function() {
 7 count += 1;
 8 expect(count).toEqual(1);
 9 });
10 it('should check for the reset value', function() {
11 expect(count).toEqual(0);
12 });
13 });

These beforeEach and afterEach methods are chained when inside nested describe blocks, so we can set up complex test trees without duplicating our code.

End to end introduction

When we are end-to-end testing we are going to use the Angular scenario runner. The Angular scenario runner simulates user interactions so that we can more accurately assess the status of the application.

When we write scenario tests, we’ll describe how the application should behave from different stages. Just like in unit testing, we’ll be using Jasmine to set up our expectations and behavior.

We will be working directly with the scenario runner API to control our browsers as they work through the application tests. The API allows us to run the browser through many various actions, including entering data into input fields, selecting elements, navigating the browser, controlling browser flow and more.

The core fundamental API method we’ll use is the browser() method. This method returns an object that we’ll be able to chain methods to control the browser.

The scenario runner works by opening a browser window with an iframe embedded inside. This iframe is where karma runs our app tests and tracks the success or failurs of the scenario runner.

Navigating pages

To load a url into the test browser frame, we’ll use the navigateTo function that takes a single argument: the url to load.

1 browser().navigateTo(url)

We can also dynamically load a url by calling a function to find the URL. This is common for cases when we don’t know the destination url when we’re writing a test, checking the outcome of a certain action, for instance.

1 browser().navigateTo(title, function() {
2 // return the dynamic url here;
3 return '/';
4 });

Reload the page

We can refresh the currently loaded page in the test frame:

1 browser().reload()

Handling the window object

We can get the current href of the currently loaded page in the test frame:

1 browser().window().href()

To get the path of the currently loaded page in the test frame:

1 browser().window().path()

To get the current search of the page loaded in the test frame:

1 browser().window().search()

We can get the latest hash of the currently loaded page in the test frame:

1 // The hash is returned without the #
2 browser().window().hash();

Location location location

To get the current $location.url() of the page loaded in the test frame:

1 browser().location().url()

We can get the $location.path() of the currently loaded page in the test frame:

1 browser().location().path()

It’s also easy to get the $location.search() of the current page:

1 browser().location().search()

Finally, we can get the hash of the current page as well:

1 browser().location().hash()

Setting expectations

To actually verify that our application does work the way we expect it to act, we’ll need to set up expectations that assert a certain state. We can do this with a combination of the e2e and scenario APIs.

Using expect(), we will assert that the value of a given future object matches the matcher. Anything given back by the scenario API is a future object that the scenario runner will resolve and we’re validating that the eventual value will result in what is expected.

1 expect(browser().location().path())
2 .toBe('/')
3 // Or negate the expectation with not()
4 expect(browser().location().path())
5 .not().toBe('/home')

Interacting with the content

End-to-end testing is particularly powerful as we are actually loading the page our users will see, so we can peek into the result that they see and verify that it looks right and works according to our expectations.

We can select elements, enter values into input fields, click on buttons, verify content is where it should be, run through repeaters, etc.

To select an element on a page, we’ll use the element() API method. This API method takes two parameters:

	selector - the jQuery HTML element selector

 	label - a string of text used for output in the browser or terminal

1 element("form", "the signup form")

With this element selected, we can execute methods to query the state of the it on the page.

To check the number of elements that match a certain jQuery selector:

1 element("input", "input elements").count()

To click on an element, for instance on a submit button, we can call:

1 element("button", "submit button").click()

We can run a function on a certain jQuery selector using the query() function.

 1 // select all links on the page
 2 element("a", "all links").query(
 3 // all of the links will be passed to the
 4 // function as elements
 5 function(elements, done) {
 6 // Do what we'd like with each element
 7 angular.forEach(elements, function(ele) {
 8 expect(ele.attr('ng-click'))
 9 .toBeDefined();
10 });
11 done(); // Tell the scenario runner we are done
12 });

We can look at each element and set different expectations on the jQuery attributes.

We can fetch or set the value of an element:

1 element("button", "submit button").val()
2 // Or set
3 element("button", "submit button").val("Enter")

We can fetch or set the text:

1 // The text of a block of html
2 element("h1", "header").text()
3 // Or set
4 element("h1", "header").text("Header text")

We can get or fetch the html of an element

1 // HTML of the html
2 element("h1", "header").html()
3 // Or set
4 element("h1", "header").html("<h2>New header</h2>")

To set or fetch the height

1 // Height of an element
2 element("div", "signup box").height()
3 // To set
4 element("div", "signup box").height('200px')

To fetch or set the innerHeight:

1 // innerHeight of an element
2 element("div", "signup box").innerHeight()
3 // To set
4 element("div", "signup box").innerHeight('190px')

To set or fetch the outerHeight:

1 // outerHeight of an element
2 element("div", "signup box").outerHeight()
3 // To set
4 element("div", "signup box").outerHeight('210px')

To set or fetch the width:

1 // width of the element
2 element("div", "signup box").width()
3 // Setting
4 element("div", "signup box").width('300px')

To set or fetch the innerWidth:

1 // innerWidth of the element
2 element("div", "signup form").innerWidth()
3 // Setting
4 element("div", "signup form").innerWidth('200px')

To set or fetch the outerWidth:

1 // outerWidth of the element
2 element("div", "signup form").outerWidth()
3 // Setting
4 element("div", "signup form").outerWidth('305px')

To set or fetch the position of the element:

1 // The position of the element
2 element(".logo", "our logo").position()
3 // Or
4 element(".logo", "our logo").position("absolute")

To get or set the scrollLeft:

1 // The scrollLeft value of the element
2 element("#signup_form", "signup form").scrollLeft()
3 // Setting
4 element("#signup_form", "signup form").scrollLeft(0)

To get or set the scrollTop value, where you can force the browser to scroll to a specific element:

1 // The scrollTop value of the element
2 element("#signup_form", "signup form").scrollTop()
3 // Setting
4 element("#signup_form", "signup form").scrollTop(0)

To fetch or set the offset

1 // The element's offset
2 element("#signup_form", "signup form").offset()
3 // Setting
4 element("#signup_form", "signup form").offset(0);

We can also query and/or change the value of an element in a jQuery selector. We can get an attribute (with attr):

1 element("div", "signup box").attr('width')
2 // To set it
3 element("div", "signup box").attr('width', '100%')

We can fetch a property (with prop)

1 element("div", "signup box").prop('width')
2 // To set it
3 element("div", "signup box").prop('width', '100%')

And we can fetch css (with css):

1 element("div", "signup box").css('border-color')
2 // To set it
3 element("div", "signup box").css('border-color', 'red')

We can interact with the content in different ways, other than simply by fetching the element using element(). Angular’s scenario runner includes a few different helper methods that enable us to both query and interact with the rendered DOM.

We can introspect into angular’s understanding of different elements that we’re are interested in. We can select them, find bindings, interact with input elements, and query the page for testing native angular bindings.

Selecting elements on the page

One of the lowest level helpers the scenario runner sets up for us is the using() function. The using() method allows us to target specific elements using jQuery-style element selectors.

1 it('does not test anything yet', function() {
2 // Target a specific element
3 using('.input_email').binding('email');
4 });

The using() method takes up to two parameters:

jQuery selector

This is the selector we’ll use to select the element on the page.

Label (string optional)

This is a label that the runner will use to identify the selector in the output of our tests.

Interacting with the angular binding

The scenario runner includes a way for us to query into the bindings set up by angular. This enables us to query into our angular bindings on the DOM and select the first binding for the specific element.

For instance, if we have the HTML, where the property name on the $scope element is available on the DOM:

1 <input type="text" ng-model="name" />

We can query for this specific binding in the scope by using the binding() method:

1 it('should update the name', function() {
2 using('.form').input('name').enter('Ari');
3 expect(
4 using('.form').binding('name')
5).toBe('Ari');
6 });

The binding() method takes a single argument:

	name (string)

This is the name of the binding for the DOM element we’re interested in querying.

Interacting with input elements

We can interact with input elements on our page as well. If we want to input text in a text box, checking a checkbox or selecting a value for an option element, we can using the input() method.

The input() method itself returns an object that is intended on allowing us to call methods to interact with the element. It takes a single argument:

	name (string)

The name of the corresponding ng-model name.

The available methods that can be called on the input field are:

enter()

The enter() method enters a value into an input field.

Given the HTML:

1 <input type="text" ng-model="name" />

We can enter ‘Ari’ into the input with:

1 input('name').enter('Ari');

check()

The check() method will check a checkbox input field.

Given the HTML:

1 <input type="checkbox" ng-model="save" />

We can check the save checkbox by calling:

1 input('name').check();

select()

The select() method will select a given value for a radio button.

Given the HTML:

1 <input type="radio" ng-model="color" value="red" />
2 <input type="radio" ng-model="color" value="blue" />
3 <input type="radio" ng-model="color" value="yellow" />

We can select the radio button with the following test:

1 input('color').select('red');

val()

Lastly, we can get the current value of the input field simply by calling .val() on the input element. We’ll use this to check the current value of the specific input element.

1 input('color').select('red');
2 input('color').val(); // This will be "red"

Option inputs

It’s also easy to select an option for a given option input field. We’ll use the select() method to enable us select one option over another option in a selection tag.

Given the HTML:
{lang=”html”}
 <select ng-model="color" ng-options="c.name for c in colors">
 <option value="">Pick your favorite color"</option>
 </select>

1 select('color')

The select() method returns an object with a method to select a single option from the select input as well as one with the ability to select multiple inputs for multi-selects.

option()

The option() method allows us to select a single value from the list.

1 select('color').option('red');

The option() method takes a single argument:

	value (string)

The value argument is a single string that selects the input with the given value.

options()

The options() method allows us to select multiple values from a multi-select option.

1 select('color').options('Ghostbusters', 'Titanic');

The options() method takes any number of arguments to select the values from the option field as necessary:

	values (list of strings)

The values to select from the multiselect.

Repeating repeating elements elements

Angular makes it incredibly easy to build DOM elements for lists through the ng-repeat directive and the angular scenario enables us to test these repeating directives easily.

The repeater() function itself returns an object with several methods we can use to query the different list of elements. It accepts up to two arguments:

	selector (string)

The jQuery selector that points to the selector of the element’s we are interested in.

	label (optional string)

The label is a string that is used in test outputs.

The available methods that we can call on the list of elements returned by the repeater are as listed below. For each of these tests, we’ll use the following HTML as example HTML:

1 <table id="phonebook">
2 <tr ng-repeat="person in people">
3 <td>{{ person.name }}</td>
4 <td>{{ person.email }}</td>
5 </tr>
6 </table>

The methods are as follows:

count()

The count() method returns the number of rows in the repeater that match the jQuery selector in the DOM.

1 repeater('#phonebook tr').count();

The count method takes no arguments and will simply return a single integer.

column()

The column() method returns an array with the values in the column with the given binding in the repeater that matches the jQuery selector in the DOM.

1 repeater('#phonebook tr')
2 .column('person.name');

The column() method takes a single argument:

	binding (string)

This is the binding for the specific element of the repeater. This is the name of the binding that is rendered in the element.

row()

The row() method returns an array with the bindings in the row at a specific index in the repeater that matches the given jQuery selector.

1 repeater("#phonebook tr").row(0);

The row() method takes a single argument:

	index (integer)

The index is the number of the row to return the given bindings.

Mocking and test helpers

Before we can start writing tests, we need to understand a core feature of testing: mocking. Mocking in testing is an old concept that allows us to define simulated objects that mimic the behavior of real objects under controlled circumstances.

AngularJS provides it’s own mocking library (called angular-mocks and available as the angular-mocks.js file). Mocking objects are specifically designed to be used in unit testing.

To set up a mock object in a unit test, we need to make sure we’re including the angular-mocks.js file in our karma configuration.

Ensure that your test/karma.conf.js file contains the angular-mocks.js in the files array. Once we have the dependency included, we can create a mock reference to the angular module.

For example in this common unit test setup, we’ll create a describe execution context where we call angular.mock.module before every test runs in our describe context:

1 describe('myApp', function() {
2 // Mock our 'myApp' angular module
3 beforeEach(angular.mock.module('myApp'));
4
5 it('...')
6 });

 Note that we can also just call module because the function angular.mock.module is published on the window interface for global access.

After we have set up our mock angular module, we can inject any of our services connected to that module into our test code.

With the tests, we’ll need to inject the dependencies just as Angular will at runtime. In our unit tests, this is necessary as it’s important that we isolate the functionality we want to test.

To inject a dependency, we’ll use the angular.mock.inject method in a beforeEach function call similarly to how we did so above.

 1 describe('myApp', function() {
 2 var scope;
 3
 4 // Mock our 'myApp' angular module
 5 beforeEach(angular.mock.module('myApp'));
 6 beforeEach(angular.mock.inject(function($rootScope) {
 7 scope = $rootScope.$new();
 8 });
 9 it('...')
10 });

 Similarly to the module function, the inject function is also available on the window object for global access, so we can just call inject.

In this test, like most all of our unit tests, we’ll want to save a reference to an instance of the object we are working with (in the above example, we’re saving scope). This way we can work with the reference of the object in all of our it() clauses.

Often times we’ll want to store the reference as the same name as we’re injecting into our test. For example, if we are testing a service we can inject the service and store a reference to the service using a slightly different naming scheme. We’ll enclose the injected service in _ underscores which will cause the injector to ignore the name when it’s injected.

 1 describe('myApp', function() {
 2 var myService;
 3
 4 // Mock our 'myApp' angular module
 5 beforeEach(module('myApp'));
 6 beforeEach(inject(function(_myService_) {
 7 myService = _myService_;
 8 });
 9 it('...')
10 });

Mocking the $httpBackend

Angular also comes built-in with an $httpBackend mocking library so that we can mock any external XHR requests in our app and can avoid making expensive $http requests in our tests.

The $httpBackend service is a Fake HTTP backend implementation that allows us to isolate and specify conditions that external servers will put our app and we can determine how exactly our app behaves.

Using the $httpBackend, we can verify a request gets made, stub responses, stub calls and set assertions that verify how we expect our app to behave based on the response of the remote server. We’ll use the $httpBackend solely in unit tests.

 	
 [image: information]
 	
 It is possible to use the $httpBackend service in end-to-end testing, but doing so will generally not test the app fully because we are no longer using our real server.

Testing with the $httpBackend works simply by hijacking the dependency injection chain where we’ll inject the mock $httpBackend instead of the real $httpBackend service that makes the actual http requests by the $http service. In this way, we don’t need to change our app at all to support testing it.

Flushing HTTP requests

When in production, the $httpBackend responds to requests asynchronously, which is fundamentally difficult to set up in testing environments. Thus, we will need to manually flush any pending requests at the end of our tests so that we can clean the execution environment, yet still keep the asynchronous behavior of the $httpBackend.

The $httpBackend has two methods for setting up handling http responses by a mock backend system. These two methods are the expect and when methods and have different use-cases.

Typically, in a unit test we’ll want to ensure that all of the requests we set up with expectations are run at the end of each test and throw an exception if they don’t. Additionally, we’ll want to ensure that there are no outstanding requests that are pending at the end of each test.

We can take care of these two cases with two methods in an afterEach block:

1 // ...
2 afterEach(function() {
3 $httpBackend.verifyNoOutstandingExpectation();
4 $httpBackend.verifyNoOutstandingRequest();
5 });

There are cases when we want to reset all of the request expectations we’ve set. These cases occur when we want to reuse the same instance of $httpBackend when inside of a multiple-phase test.

We can reset them with the resetExpectations() method:

1 // ...
2 it('should be a multiple-phase test', function() {
3 // ...
4 $httpBackend.resetExpectations();
5 // ...
6 });

expect

The expect method sets up a request expectation and is uses to make assertions about the requests made by the application and define responses for them. The test will fail if the expected requests are not made or they are incorrectly made. These are used primarily to set up an assertion that a request has been made.

The expect method takes two required arguments with two additional optional arguments:

	method

The string HTTP method, like ‘GET’ or ‘POST’

	url

The HTTP url where we’re expecting the call

	data (optional)

The HTTP request body or function that receives a data string and returns true if the data is expected, or a javascript object to send the body in JSON format.

	headers (optional)

The HTTP headers or function that will receive the header object and return true if the headers match the expectation.

The expect method returns an object with a respond method that controls how the matched request is handled inside the tests.

 1 describe('Remote tests', function() {
 2 var $httpBackend, $rootScope, myService;
 3
 4 beforeEach(inject(
 5 function(
 6 _$httpBackend_, _$rootScope_, _myService_) {
 7 $httpBackend = _$httpBackend_;
 8 $rootScope = _$rootScope_;
 9 // myService is a service that makes HTTP
10 // calls for us
11 myService = _myService_;
12 }));
13
14 it('should make a request to the backend', function() {
15 // Set an expectation that myService will
16 // send a GET request to the route
17 // /v1/api/current_user
18 $httpBackend.expect('GET', '/v1/api/current_user')
19 .respond(200, {userId: 123});
20 myService.getCurrentUser();
21 // Important to flush requests
22 $httpBackend.flush();
23 });
24 });

The expect method has several methods that are more descriptive of the expectation:

expectGET() creates a new request expectation for a GET method. expectGET() takes two arguments:

	url - a HTTP url

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.expectGET("/v1/api/current_user")

expectHEAD() creates a new request expectation for a HEAD method. It accepts two arguments:

	url - a HTTP url

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.expectHEAD("/v1/api/current_user")

expectJSONP() creates a new request expectation for a JSONP request. It accepts a single argument:

	url - a HTTP url

1 // ...
2 $httpBackend.expectJSONP("/v1/api/current_user")

expectPATCH() creates a new request expectation for PATCH requests. It accepts three arguments:

	url - a HTTP url

 	data - (optional) HTTP request body or a function that receives the data string and returns true if the data is as expected or a JSON object

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.expectPATCH("/v1/api/current_user")

expectPOST() creates a new request expectation for POST requests. It accepts three arguments:

	url - a HTTP url

 	data - (optional) HTTP request body or a function that receives the data string and returns true if the data is as expected or a JSON object

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.expectPOST("/v1/api/sign_up", {'userId': 1234});

expectPUT() creates a new request expectation for PUT requests. It takes three arguments:

	url - a HTTP url

 	data - (optional) HTTP request body or a function that receives the data string and returns true if the data is as expected or a JSON object

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.expectPUT("/v1/api/user/1234", {'name': 'Ari'});

expectDELETE() creates a new request expectation for DELETE requests. It takes two arguments:

	url - a HTTP url

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.expectDELETE("/v1/api/user/123")

requestHandler

Our expect() methods all return a requestHandler object that has a single function: respond. The respond method gives us the ability to set up a response for the mocked HTTP request.

The requestHandler response function is a function that can take one of two forms.

The first form allows us to set a response code, response data, headers, or all three.

1 // ...
2 $httpBackend.expectGET("/v1/api/current_user")
3 // Respond with a 200 status code
4 // and the body "success"
5 .respond(200, 'Success');
6 // Or only return data
7 .respond("Fail");
8 // Or only headers
9 .respond({'X-RESPONSE', 'Failure'});

The second form enables us to set a request handler function that gets executed upon the successful execution of the request. Instead of returning data, we’ll return a function handler that can return an array that contains the response status code, response data, and response headers

1 // ...
2 $httpBackend.expectGET("/v1/api/current_user")
3 // Respond with a 200 status code
4 // and the body "success"
5 .respond(function(method, url, data, headers) {
6 return [200, "DATA", {"header1": "Header1"}];
7 });

when

The $httpBackend also has the when method that differs from the expect method in that it doesn’t create an expectation for a request at all. In fact, it’s purpose is primarily to create a fake backend for an app and return fake data.

Unlike expectations, when using when(), every single request that matches the URL can be handled by a single when definition. Additionally, a response is required when using when, whereas with expect a response is not required.

The when() method is great for setting up backend definitions that are common for all tests, for instance when testing a controller that is using the resolve property that depends upon foreign data being loaded.

The when() function takes two required arguments with two additional optional requirements:

	method

The string HTTP method, like ‘GET’ or ‘POST’

	url

The HTTP url where we’re expecting the call.

	data (optional)

The HTTP request body or function that receives a data string and returns true if the data is expected, or a javascript object to send the body in JSON format.

	headers (optional)

The HTTP headers or function that will receive the header object and return true if the headers match the expectation.

1 // ...
2 $httpBackend.when('GET', "/v1/api/current_user")
3 // Respond with a 200 status code
4 // and the body "success"
5 .respond(200, 'success');

Similar to the expect method, we have the same helper methods that make the use of when more descriptive.

whenGET() creates a new backend definition for a GET method. whenGET() takes two arguments:

	url - a HTTP url

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.whenGET("/v1/api/current_user")
3 .respond(200, {userId: 123});

whenHEAD() creates a new backend definition for a HEAD method. It accepts two arguments:

	url - a HTTP url

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.whenHEAD("/v1/api/current_user")
3 .respond(200);

whenJSONP() creates a new backend definition for a JSONP request. It accepts a single argument:

	url - a HTTP url

1 // ...
2 $httpBackend.whenJSONP("/v1/api/current_user")
3 .respond({userId: 123});

whenPOST() creates a new backend definition for POST requests. It accepts three arguments:

	url - a HTTP url

 	data - (optional) HTTP request body or a function that receives the data string and returns true if the data is as expected or a JSON object

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.whenPOST("/v1/api/sign_up",
3 {'userId': 1234})
4 .respond(200);

whenPUT() creates a new backend definition for PUT requests. It takes three arguments:

	url - a HTTP url

 	data - (optional) HTTP request body or a function that receives the data string and returns true if the data is as expected or a JSON object

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.whenPUT("/v1/api/user/1234", {'name': 'Ari'});

whenDELETE() creates a new backend definition for DELETE requests. It takes two arguments:

	url - a HTTP url

 	headers - (optional) HTTP headers.

1 // ...
2 $httpBackend.whenDELETE("/v1/api/user/123")
3 .respond(200);

Testing an app

With our testing harness setup, we can start testing the different components of our app. Any part of our module that has logic that may change are good candidates for testing. Does a route work the way we expect, does the the page contain specific content, does the controller code execute, etc.

We’re going to focus on testing different components of our app, the most common places to test our app as well as tips and tricks on how to test the various components.

We’ll cover testing the following components or our app:

	Routes

 	Requests and page content

 	Controllers

 	Services & Factories

 	Filters

 	Templates and views

 	Directives

 	Resources

 	Animations

For each component, we’ll look at our options for testing and then we’ll run through how to test it with the available methods.

For most all of our tests, our base code that we’ll start with looks like:

1 describe('NAME', function() {
2 });

Testing routes

When we test our routes, we want to set up a test that ensures the route that we’re in is routed properly by our app. We’ll need to check where the route works, if it’s found or if it’s a 404. We’ll check if the routing events get fired and we’ll check if the template that we expect is actually loaded.

In testing routing, we can use either unit testing or end-to-end testing. Since our routes will change page locations (URL) and page content, we’ll need to check if the route has been loaded, if the page has been found and what’s in-between.

To test these routes, we’ll assume we have the simple routing code set up that looks like:

 1 angular.module('myApp', ['ngRoute'])
 2 .config(function($routeProvider) {
 3 $routeProvider
 4 .when('/', {
 5 templateUrl: 'views/main.html',
 6 controller: 'HomeCtrl'})
 7 .when('/login', {
 8 templateUrl: 'views/login.html',
 9 controller: 'LoginCtrl'})
10 .otherwise({redirectTo '/'});
11 })

Unit testing routes

In order to set up our unit tests so that they can test our routing code, we’ll need to do a few things:

	Inject the $route, $location, and $rootScope services

 	Set up a mock backend to handle XHR fetching template code

 	Set a location and run a $digest lifecycle

We’ll store a copy of our three services we’ll use in our tests: location, route, and rootScope so we can later reference these services in our tests.

 1 describe('Routes test', function() {
 2 // Mock our module in our tests
 3 beforeEach(module('myApp'));
 4
 5 var location, route, rootScope;
 6 beforeEach(
 7 inject(_$location_, _$route_, _$rootScope_) {
 8 location = _$location_;
 9 route = _$route_;
10 rootScope = _$rootScope_;
11 });
12 // Our test code will go here
13 });

Now that we have our services injected into the controller, we’ll set a mock backend to handle the angular fetching of the templates from the templateUrl. We’ll use the $httpBackend to create an expectation that we are expecting the template to be fetched:

 1 describe('Routes test', function() {
 2 // Mock our module in our tests
 3 beforeEach(module('myApp'));
 4
 5 var location, route, rootScope;
 6 beforeEach(inject(
 7 function(_$location_, _$route_, _$rootScope_) {
 8 location = _$location_;
 9 route = _$route_;
10 rootScope = _$rootScope_;
11 }));
12 describe('index route', function() {
13 beforeEach(inject(
14 function($httpBackend) {
15 $httpBackend.expectGET('views/home.html')
16 .respond(200, 'main HTML');
17 }));
18 // Our tests will code here
19 });
20 });

With our test code all set up, we can start writing our tests. In order to test the router with unit tests, we’ll need to mimic how the router works in production. The router works with the digest life-cycle where after the location is set, it will take a single digest loop cycle to process the route, transform the page content, and finish the routing. Knowing this, we’ll need to account for the change in paths in our test.

Inside our test, we’re going to test two states of the application in the index route:

	When a user navigates to the index page, they are shown the index page with the proper controller

 	When a user navigates to an unknown route, they are taken to the index page as defined by our otherwise function.

We can test the conditions by setting up our $location service to pass the paths. In order to trigger the location request, we’ll run a digest cycle (on the $rootScope) and check that the controller is as expected (in this case, the ‘HomeCtrl’).

 1 it('should load the index page on successful load of /',
 2 function() {
 3 location.path('/');
 4 rootScope.$digest(); // call the digest loop
 5 expect(route.current.controller)
 6 .toBe('HomeCtrl')
 7 });
 8 it('should redirect to the index path on non-existent
 9 route', function() {
10 location.path('/definitely/not/a/_route');
11 rootScope.$digest();
12 expect(route.current.controller)
13 .toBe('HomeCtrl')
14 });

To run these tests, make sure you have your grunt server running:

1 $ cd myApp
2 $ grunt server

Run karma start karma.conf.js in your app file and you will see immediate output in our terminal.

 [image: Unit testing routes]Unit testing routes

We did a lot of work to set up our routes test and we only tested one route location. Since we are testing flow changes for our user features, we can shuffle this work off to the application and test this more rigorously in end-to-end testing.

End-to-end route testing

With end-to-end testing, we don’t need to mock any part of angular as we’re black-box testing the app. In this way, we can just describe how we want our app to behave and write our tests accordingly.

In writing our end-to-end tests, we’ll think about how the user navigates around our application. Our tests should be readable in that we’re sending our user to a particular page and describing what they should experience in our app.

Our base test for all of our end-to-end tests will simply be:

1 describe('E2E: NAME', function() {
2 // Our tests will go here
3 });

That’s it. We’re going to use the browser() API function to modify the source of the iframe inside our browser.

To test our index route, we’ll point our browser to the index route and ensure that the location is in-fact at the index page.

1 describe('E2E: Routes', function() {
2 it('should load the index page', function() {
3 browser().navigateTo('/#/');
4 expect(browser().location().path()).toBe('/');
5 });
6 });

To run this test, we’ll need to make sure that our grunt server is running:

1 $ cd myApp
2 $ grunt server

Now we’ll run karma:

1 $ karma start karma-e2e.conf.js

In here, we’ll see immediate output in our terminal. If the test is successful, you’ll see that it passes all of it’s tests. If not, it will report it’s failures to you.

 [image: End-to-end testing routes in our terminal]End-to-end testing routes in our terminal

With end-to-end tests, we can also use the browser to debug our tests. When we started karma, a browser opened in the background. Open the browser and click on the debug button in the top right corner:

 [image: Debug button in the browser]Debug button in the browser

This will open a new page that shows us all of our tests, a list of the ones that pass, and a list of the ones that fail. It’s useful when we’re developing our tests to use our browser as reference as we’re debugging our application and tests.

 [image: Visual representation of our tests in-browser]Visual representation of our tests in-browser

Testing page content

When we’re testing the page content gets rendered correctly to our browser, we need to assert that certain content gets delivered in the browser to our users.

Unit testing content in the browser won’t give us much detail as to the state of the application as we don’t have direct access to the browser content in unit testing.

We can confirm that the controllers are executing the expected functions and set assertions that confirm the content will be loaded, which we will cover in-depth.

End-to-end testing page content

End-to-end testing, on the other hand is ideal for setting up expectations for loaded HTML. With end-to-end testing, every part of the application responsible for executing a successful browser request will fire.

To set up end-to-end content testing, we’ll set up our test like normal:

1 describe('E2E: Content', function() {
2 });

We’re going to set up two scenarios in this route test:

	That we have a link to the login route at our index page

 	That we can click on the link and be brought to the login page

In our first test, we’ll simply test that there IS a login button on our page. We’ll set an assertion that we have a login button to click.

In our index.html, suppose we have the following content:

1 <div id="authorize">
2 Try it! Sign in
3 </div>

Inside of this first test, we’ll just confirm that we have the element that matches the text in the button:

1 it('should have a sign up button', function() {
2 browser().navigateTo('/#/');
3 expect(
4 element("a#login").html()
5).toEqual("Try it! Sign in");
6 });

Now, we want to ensure that when our users click on this link, they are brought to the login page. We’ll set up another tests that asserts if we click on the link that our new location is at the login route:

1 it('should show login when clicking sign in', function() {
2 browser().navigateTo('/#/');
3 element("a#login", "Sign in button").click();
4 expect(browser().location().path())
5 .toBe('/login');
6 });

Lastly, if we had a user to tests against, we can set up our test to fill out our login form simply by selecting the input elements and setting their value.

 1 it('should be able to fill in the user info',
 2 function() {
 3 browser().navigateTo('/#/');
 4 element("a#login", "Sign in button").click();
 5 input("user.email").enter("ari@fullstack.io");
 6 input("user.password").enter('123123');
 7 element('form input[type="submit"]').click();
 8 expect(browser().location().path())
 9 .toBe('/dashboard');
10 });

 [image: Content loading tests]Content loading tests

Testing controllers

The business logic of our application is contained in our controllers. This is where the $scope marries the controller to the view. Since we’re going to do most of the work of updating the views of our application in our controllers, we can set up tests to ensure that their behavior is does execute as expected.

Unit testing controllers

When we’re unit testing controllers, we’ll need to set up our tests to mimic the behavior of Angular.

Setting up our unit tests we’ll need to make sure we:

	Set up our tests to mock the module

 	Store an instance of the controller with an instance of a known scope

 	Test our expectations against the scope

To instantiate a new controller instance, we’ll need to create a new instance of a scope from the $rootScope with the $new() method. This will set up the scope inheritance that angular uses at runtime.

With this scope, we can instantiate a new controller and pass the scope is as the $scope of the controller.

 1 describe('Unit controllers: ', function(){
 2 // Mock the myApp module
 3 beforeEach(module('myApp'));
 4 describe('FrameCtrl', function() {
 5 // Local variables
 6 var FrameController, scope;
 7 beforeEach(inject(
 8 function($controller, $rootScope) {
 9 // Create a new child scope
10 scope = $rootScope.$new();
11 // Create a new instance of the FrameController
12 FrameController = $controller('FrameCtrl',
13 { $scope: scope });
14 }));
15
16 // Our tests go here
17 });
18 });

With our test set up, we have both an instance of our FrameController as well as the $scope for the controller. Now we can use that scope to test the scope on the FrameController.

In our FrameController we have a clock that ticks with the current time at the top of the app. We also have access to a user and their timezone.

The relevant parts of the controller code look like:

 1 angular.module('myApp.controllers', [])
 2 .controller('FrameCtrl',
 3 ['$scope', '$timeout', function($scope, $timeout) {
 4 $scope.time = {
 5 today: new Date()
 6 };
 7 $scope.user = {
 8 timezone: 'US/Pacific'
 9 }
10 var updateClock = function() {
11 $scope.time.today = new Date();
12 };
13 var tick = function() {
14 $timeout(function() {
15 $scope.$apply(updateClock);
16 tick();
17 }, 1000);
18 }
19 tick();
20 }]);

 	
 [image: tip]
 	
 Our FrameController is purposefully simplied for focus on the test. To see the entire test suite for the sample app, see the code that accompanies this book.

We’ll test two features of our controller:

	The time is defined

 	The user is defined and has a timezone

1 // Testing the FrameController values
2 it('should have today set', function() {
3 expect(scope.time.today).toBeDefined();
4 });
5
6 it('should have a user set', function() {
7 expect(scope.user).toBeDefined();
8 });

End-to-end testing controllers

The result of end-to-end testing controllers will look very similar to that of our tests where we test the page content renders as expected as we’re testing that all of the functions in the controller actually fire.

To test if a page has been rendered or not, we can call the page browser in question in the browser and test if the content we expect has been rendered in the view.

Our boilerplate for our end-to-end tests looks like:

1 describe('E2E controllers: ', function() {
2 // Our tests go here
3 });

With our test set up, we can add our specs. We’re going to test that the date (or at least a portion of it) exists on the page as well as the timezone.

 1 beforeEach(function() {
 2 browser().navigateTo('/#/');
 3 });
 4
 5 it('should have the date in the browser', function() {
 6 var d = new Date();
 7 expect(
 8 element("#time h1").html()
 9).toMatch(d.getFullYear());
10 });
11
12 it('should have the user timezone in the header', function() {
13 expect(
14 element('header').html()
15).toMatch('US/Pacific');
16 });

It is convenient to know if our timeout function has been called inside our controller. We can confirm that we are in fact setting the timeout to be called using the jasmine helper createSpy.

If we modify our beforeEach() function from above, we can include the $timeout service in our controller.

 1 var FrameController, scope, timeout;
 2 beforeEach(inject(
 3 function($controller, $rootScope) {
 4 scope = $rootScope.$new();
 5 timeout = jasmine.createSpy('timeout');
 6 FrameController = $controller('FrameCtrl', {
 7 $scope: scope,
 8 $timeout: timeout
 9 });
10 }));

Now, in our tests, we can set an expectation that the service does in fact get called:

1 it('should set the clock a foot', function() {
2 expect(timeout).toHaveBeenCalled();
3 });

Testing services & factories

Services are easy to test as they are isolated objects that offer localized functionality. Since they are singleton objects, we can create these objects in isolation and test their behavior.

Unit testing services

Unit testing services are pretty easy as we only need to inject our services into our tests.

Starting with the simple example, suppose we have the service that provides a version:

1 angular.module('myApp.services', [])
2 .value('version', '0.0.1');

In this case, our service provides a single string value. We can inject the version service into the current test.

Our test boilerplate for this unit test looks like:

1 describe('Unit: services', function() {
2 beforeEach(module('myApp'));
3 });

 	
 [image: information]
 	
 Up until now, we’ve been implicitly calling the $injector service. This example shows how to use it explicitly.

To isolate the test, we’ll nest this test into a describe() block and inject our version service in a beforeEach() block.

 1 describe('version', function() {
 2 var version;
 3 beforeEach(inject(function($injector) {
 4 // use the $injector to get the version service
 5 version = $injector.get('version');
 6 }));
 7
 8 it('should have the version as a service',
 9 function() {
10 // set our expectation on the version service
11 expect(version).toEqual('0.0.1');
12 });
13 });

As we can see, testing services is really simple. However, our services are not always this simple. In our sample app, we’re interacting with the googleApi. This service is a bit more complex.

The full source for the googleServices.googleApi service:

 1 // Our google services module
 2 angular.module('googleServices', [])
 3 .factory('googleApi',
 4 ['$window', '$document', '$q', '$rootScope',
 5 function($window, $document, $q, $rootScope) {
 6 // Create a defer to encapsulate the loading of
 7 // our Google API service.
 8 var d = $q.defer();
 9
10 // After the script loads in the browser, we're going
11 // to call this function, which in turn will resolve
12 // our global defer which enables the
13 $window.bootGoogleApi = function(keys) {
14 // We need to set our API key
15 window.gapi.client.setApiKey(keys.apiKey);
16 $rootScope.$apply(function() {
17 d.resolve(keys);
18 });
19 };
20
21 // Load client in the browser
22 var scriptTag = $document[0].createElement('script');
23 scriptTag.type = 'text/javascript';
24 scriptTag.async = true;
25 scriptTag.src = 'https://apis.google.com/js/client:plusone.js?onload=onLoad\
26 Callback';
27 var s = $document[0].getElementsByTagName('body')[0];
28 s.appendChild(scriptTag);
29
30 // Return a singleton object that returns the
31 // promise
32 return {
33 gapi: function() { return d.promise; }
34 }
35 }]);

The service itself returns us an object with a single function that returns a promise that will be resolved once the google API has been loaded and is ready on the page.

To set out our expectations for this service, we’ll need to use the jasmine method spyOn to create a spy on the method we’re calling as well as set up an expectation that it is actually called.

We’ll set up our tests to run against the google api in an isolated describe() block:

 1 describe('googleServices', function() {
 2 var googleApi, resolvedValue;
 3
 4 beforeEach(inject(function($injector) {
 5 // Fetch the defined googleApi from our service
 6 googleApi = $injector.get('googleApi');
 7 // Create a spy for the gapi function
 8 // that tells us it's been called, but doesn't
 9 // prevent the actual function from being called
10 spyOn(googleApi, 'gapi')
11 .andCallThrough();
12 // Use the actual function's resolve to
13 // set the resolved value
14 googleApi.gapi().then(function(keys) {
15 resolvedValue = keys;
16 });
17 }));
18
19 describe('googleApi', function() {
20 // Our tests go here
21 });
22 });

 We can also inject the googleApi service above by name as the inject() function uses the same syntax as the $injector.
The above call would change to: inject(function(googleApi)) instead.

Note: by using the andCallThrough() method, our test will wait for the gapi object to be present on the window. We can stub these requests by using a different method andCallFake().

 1 var q;
 2 beforeEach(inject(function($injector) {
 3 // Fetch the defined googleApi from our service
 4 googleApi = $injector.get('googleApi');
 5 // Get the $q object
 6 q = $injector.get('$q');
 7 // Create a spy for the gapi function
 8 // and mock the actual response
 9 spyOn(googleApi, 'gapi')
10 .andCallFake(function() {
11 var d = q.defer(); // fake the deferred function
12 setTimeout(function() {
13 resolvedValue = {
14 clientId: '12345'
15 }
16 }, 100);
17 return d.promise;
18 });
19 // Use the actual function's resolve to
20 // set the resolved value
21 googleApi.gapi().then(function(keys) {
22 resolvedValue = keys;
23 });
24 }));

Now, we can use our spy to determine if the function has actually been called.

Our first test in this describe() block we will simply test that the method exists and is a function. This is useful if we’re still working on the api and we change the method name or signature.

To set up tests for waiting for a promise to resolve, we’ll use a jasmine helper: waitsFor(). It takes a single parameter, a function that provides a true/false response for when the method can continue. We’ll set it up to wait a maximum of 1/2 a second at most:

 1 describe('googleApi', function() {
 2 beforeEach(function() {
 3 // pause the spec for up to
 4 // half a second while we are waiting for
 5 // the resolvedValue to be resolved
 6 waitsFor(function() {
 7 return resolvedValue !== undefined;
 8 }, 500);
 9 });
10
11 it('should have a gapi function', function() {
12 expect(
13 typeof(googleApi.gapi)
14).toEqual('function');
15 });

Now we can set expectations for the return values of the service and assert that they are equal to our assumptions:

1 it('should call gapi', function() {
2 expect(googleApi.gapi.callCount)
3 .toEqual(1);
4 });
5
6 it('should resolve with the browser keys', function() {
7 expect(resolvedValue.clientId)
8 .toBeDefined();
9 });

End-to-end testing services

Since services interact with our front-end through our controllers, it’s not effective to test services specifically with end-to-end testing. We can, however test that services resolve their promises and the results populate the view.

For instance, we can test that a list of events gets populated into the view by a service. For instance, in an /events page, where we are showing a list of events we can assert that we actually are listing out the number of events we expect with the details that we expect:

1 beforeEach(function() {
2 browser().navigateTo('/#/events');
3 });
4
5 it('should show 10 events', function() {
6 expect(
7 repeater('.event_listing li').count()
8).toBe(10);
9 });

Testing filters

Filters are also easy to test as they are isolated functionality. The filter’s job is specifically to limit or manipulate output, so we’ll set assertions on the output of the filter functions.

Unit testing filters

Unit testing filters is simple. First, we’ll need to get access to the filter. We can do this simply by injecting the $filter service into our tests. This will give us access to looking up the filter in the process:

1 describe('Unit: Filter tests', function() {
2 var filter;
3
4 // Mock our module in our tests
5 beforeEach(module('myApp'));
6 beforeEach(inject(function($filter) {
7 filter = $filter;
8 }));
9 });

With this access to the filter, now it’s simply a matter of setting expectations on the output of the filter.

1 it('should give us two decimal points',
2 function() {
3 expect(filter('number')(123, 2)).toEqual('123.00');
4 });

End-to-end testing filters

We can also test the output of our filters in the view using End to End testing. End to end testing is slightly different from using unit tests to test our code as we’re focused on what the end-user sees rather than the output of our filter function specifically.

In order to set up a filter test, we’ll have our browser load the page(s) where we are testing our filter and we’ll interact with the filter itself.

For instance, given the case where we have a live-search with an ng-repeat:

 1 <input ng-model="search.$" type="text" placeholder="Search filter" />
 2 <table id="emailTable">
 3 <tbody>
 4 <tr ng-repeat="email in emails | filter:search.$">
 5 <td>{{ $index + 1 }}</td>
 6 <td>{{ email.from }}</td>
 7 <td>{{ email.subject | capitalize }}</td>
 8 </tr>
 9 </tbody>
10 </table>

Where our emails data looks like:

Events

Events

In the cases where our components of our web application are loosely connected, such as requiring user authentication and authorization handling it’s not always feasible to handle the immediate communication without coupling our components together.

For example, if our back-end responds to a request with a status code of 401 (a response indicative of an unauthorized request), we expect that our webapp doesn’t allow our user to stay connected to the current view. In this case, we’d want our app to redirect the user to a login/signup page.

With this logic, we cannot tell our controllers to set a new location from the outside. We also want this specific functionality to space across multiple scopes, so we can protect multiple scopes using the same behavior.

We need another way to communicate between them.

Angular’s scopes are hierarchical in nature, they can naturally communicate back and forth through parent-child relationships. Often times, however our scopes don’t share variables and often perform completely different functions from each other, regardless of their place in the parent tree.

For these cases, we have the ability to communicate between our scopes by propagating events up and down the chain.

What are events

Just like the browser responds to browser-level events, such as a mouse click or a page scroll, our angular app can respond to angular events. This has the advantage of being able to communicate across our application inside nested components that are not built with other components in-mind.

 	
 [image: information]
 	
 Note that the angular event system does not share the browser event system. That is, by design we can only listen for an angular events, not DOM events on scopes.

Events themselves can be thought of as a snippet of information that’s propagated across the application that generally (optionally) contains information about what’s happening inside of an application.

Event propagation

Since the scopes are set up in a hierarchy, we can pass events up or down the scope chain.

Now, a generally good rule of thumb for choosing the event passing method that we’ll use is to look at the scope that we’re firing the event from. If we want to notify the entire event system (thus, allowing any scope to handle the event), we’ll want to broadcast downwards.

On the other hand, if we want to alert a global module (so to speak), we’d end up needing to alert our higher level scopes ($rootScope, for instance) and we’ll need to pass an event upwards.

 	
 [image: information]
 	
 It’s a good idea to limit the amount of notifications sent to the global level particularly as events, although very powerful introduce complexity into our apps.

For example, when we’re routing the ‘global’ app state needs to know about which page the app is currently set, while on the other hand if we’re communicating between a tab directive to it’s child pane directives, we’ll need to send the event downwards.

Bubbling an event up with $emit

To dispatch an event to travel up the scope chain (from child scopes to parent scopes), we’ll use the $emit() function.

1 // Send an event that our user logged in
2 // with the current user
3 scope.$emit('user:logged_in', scope.user);

Within an $emit() event function call, the event gets bubbled up from child scope to the parent scope. All of the scopes above the scope that fires the event will get notified of the event.

We’ll use $emit() when we want to communicate changes of state from within our app to the rest of the application. If we want to communicate with our $rootScope then we’ll need to $emit() the event.

The $emit() method takes two arguments:

name (string)

This is the name of the event to emit.

args (set)

The args is a set of arguments that are passed into the event listeners as objects.

The $emi() method returns an event object (see event object for details on the event object).

Any exception that is emitted from any of the listeners is passed into the $exceptionHandler service.

Sending an event down with $broadcast

To pass an event downwards (from parent scopes to children scopes), we’ll use the $broadcast() function.

1 // hold on, cart is checking out
2 // so all directives below should disable
3 // themselves while the cart is checking out
4 scope.$broadcast('cart:checking_out', scope.cart);

On a $broadcast() method, every single child scope that registers a listener will receive this message. The event propagates to all directive and indirect scopes of the current scope and calls every single listener all the way down.

Events that are sent using the $broadcast() method cannot be canceled.

The $broadcast() method itself takes two parameters:

name (string)

This is the name of the event to emit.

args (set)

The args is a set of arguments that are passed into the event listeners as objects.

The $broadcast() method returns an event object (see event object for details on the event object).

Any exception that is emitted from any of the listeners is passed into the $exceptionHandler service.

Events

Listening

To listen for an event, we can use the $on() method. The $on() method registers a listener for the event of a particular name. The event name is simply the event type that is fired in Angular.

For instance, we can listen for the event that is fired when a route change process is triggered:

1 scope.$on('$routeChangeStart',
2 function(evt, next, current) {
3 // A new route has been triggered
4 });

Whenever the event of $routeChangeStart (which is broadcasted when the route is going to be changed) is fired, the listener (the function) will be called.

The evt object is passed in as the first parameter to any event that we are listening, be it our own custom events or built-in angular services.

Event object

The event object has the following attributes:

targetScope (scope object)

This is the scope that emitted or broadcasted the event.

currentScope (scope object)

This is the current scope that is handling the event.

name (string)

The name of the event that was fired and that we are handling.

stopPropagation (function)

The stopPropagation() function will cancel any further event propagation for any events that are fired through $emit.

preventDefault (function)

The preventDefault function sets the flag of defaultPrevented to true. Although we cannot stop event propagation, we can tell the child scopes that we don’t need to handle the event (effectively that they can be safely ignored).

defaultPrevented (boolean)

This is the flag of defaultPrevented that is set to true if preventDefault() was called.

The $on() function will return a de-registration function that we can call to cancel the listener.

Core services riding on events

The Angular core framework sends events that we can listen for and act upon. We’ll use these events to enable our custom angular objects the ability to interact with our app at different levels of global state.

There are several events that are called with $emit(), sending their events upward and several more that are called as a $broadcast() event.

Core system $emitted events

The following events are emitted from directives upwards to scopes that contain the directive invocation. We can use $on() to listen to these methods in any scope above the chain:

1 $scope.$on('$includeContentLoaded',
2 function(evt) {
3
4 });

$includeContentLoaded

The $includeContentLoaded event is fired from the ngInclude directive when the ngInclude content is reloaded.

$includeContentRequested

The $includeContentRequested event is emitted on the scope from the ngInclude is called. This is emitted every single time that the ngInclude content is requested.

$viewContentLoaded

The $viewContentLoaded event is emitted on the current ngView scope every single time that ngView content is reloaded.

Core system $broadcasted events

$locationChangeStart

The $locationChangeStart event is fired when angular starts to update the browser’s location based upon a mutation done by the $location service (through $location.path(), $location.search(), etc.).

$locationChangeSuccess

The $locationChangeSuccess event is broadcasted from the $rootScope if and only if the $locationChangeStart event was not prevented when the location of the browser changes successfully.

$routeChangeStart

The $routeChangeStart event is kicked off from the $rootScope before a route change occurs. This is when the route services start to resolve all of the dependencies needed for the route change to occur.

This usually involves fetching view templates and any resolve dependencies on the route property.

$routeChangeSuccess

The $routeChangeSuccess event, broadcasted from the $rootScope after all of the route dependencies are resolved after $routeChangeStart.

The ngView directive uses the $routeChangeSuccess event to know when to instantiate the controller and render the view.

$routeChangeError

The $routeChangeError event is fired if any of the resolve properties on the route object are rejected (fail). This event is broadcasted from the $rootScope.

$routeUpdate

The $routeUpdate is broadcast from the $rootScope if the reloadOnSearch property on the $routeProvider has been set to false and the same instance of a controller is being used.

$destroy

The $destroy event is broadcasted on the scope before the scope is destroyed. This gives the children scopes a chance to clean themselves up before the parent scope is actually removed to perform cleanup operations.

For instance, if we have a $timeout running in our controller, we don’t want this event to continuously fire even if the containing controller no longer exists.

 1 angular.module('myApp')
 2 .controller('MainCtrl',
 3 function($scope, $timeout) {
 4 var timer;
 5 var updateTime = function() {
 6 $scope.date = new Date();
 7 timer = $timeout(updateTime, 1000);
 8 }
 9 // Start updating time
10 timer = $timeout(updateTime, 1000);
11
12 // Clean up the timer before we kill this
13 // controller
14 $scope.$on('$destroy', function() {
15 if (timer) {
16 $timeout.cancel(timer);
17 }
18 });
19 });

Architecture

Architecture

One of the most confusing parts for our students about Angular is how to think about structuring the application. Although we cannot dictate the end-all-be-all structure as this is a preference for the developer to choose, we can share what has worked for us.

Directory structure

AngularJS is packed with features that get us up and running so quickly, that it can be difficult to determine how to structure our webapps as they grow over time. Where is the most logical place to place our controllers? Should we contain all of our services logic in a single file or should we break them out?

When building an angular app of any size, this choice is usually best made by considering the tools that we use alongside building the app as well as considering the current size of the project. However, we offer the thought that we should always build with the expectation that our project will grow.

We suggest that we create the following directory structure for our applications where we keep our application files in the scripts/ directory, each separated out by their function type with a main app.js file.

 [image: Recommended directory structure]Recommended directory structure

 	
 [image: information]
 	
 We suggest using a tool like grunt to concatenate our files together in a single file for production.

Every angular object should have it’s own file, named appropriately for it’s function. For instance, a MainCtrl object would be logically placed in the scripts/controllers/main.js file. A myFilter object would be placed in the scripts/filters/myFilter.js.

The advantage that this provides is that each file is small and directed on its functionality. It has the additional benefit of being clear for multiple developers to be able to efficiently work on the app together.

Additionally, we suggest when writing tests for our application that we mirror the scripts directory in a test/ folder at the root directory, like so:

 [image: Recommended test directory structure]Recommended test directory structure

We suggest this structure when building a single module application. When building an app composed of multiple modules, we’ll include a modules/ directory each with a similar structure as the top level structure.

Modules

Modules are the kernel of functionality for angular apps. These modules contain all of the code that we write for our specific app and thus tend to grow huge in a monolithic way. Although this isn’t bad as modules are a great way to reduce global scope noise, we can divide these modules.

There are several schools of thought as to when to create a module and when to nest functionality in a global module. Either one of the following methods are valid ways to break up our functionality by modules. Which method we choose to break up our functionality is a choice we can make out of personal preference.

Modularize on functionality

The most obvious method for breaking up our app by modules is by dividing the modules by type. This makes it incredibly easy to set up tests for our modules as well as make it easy for us to subdivide the functionality.

We’ll inject these modules as dependencies for our main app. This has the advantage of making it incredibly easy to setup testing for each module type. It isolates the functionality that we’ll need to account for when writing specs.

For instance, we can create a module for each angular object type:

 1 angular.module('myApp.directives', []);
 2 angular.module('myApp.services', []);
 3 angular.module('myApp.filters', []);
 4 // Often time we'll want to use our services
 5 // inside of our controllers, so we'll inject
 6 // those into our 'myApp.controllers' module
 7 angular.module('myApp.controllers', [
 8 'myApp.services'
 9]);
10 angular.module('myApp', [
11 'myApp.directives',
12 'myApp.controllers',
13 'myApp.filters',
14 'myApp.services'
15]);

One issue with this method is that sometimes we’ll end up with a bunch of incredibly small modules. This won’t hurt performance, but can be cumbersome to develop.

Modularize on routes

Another school of thought says that we can divide our modules by route. This allows for us to write isolated tests that focus on the functionality per-route. Modularizing by route can make more sense depending upon the project, but allows us to divide our functionality efficiently when we’re dealing with a lot of independent routes.

For instance:

1 angular.module('myApp.home', []);
2 angular.module('myApp.login', []);
3 angular.module('myApp.account', []);
4 angular.module('myApp', [
5 'myApp.home',
6 'myApp.login',
7 'myApp.account'
8]);

This makes sense specifically when we’re dealing with large amounts of routes and/or we don’t have too much cross-over between routes.

Controllers

It’s conventional to write our controllers by using the format with the name of the controller starting off with a capital letter and ending the controller name with Ctrl.

1 angular.module('myApp')
2 .controller('someController', function($scope) {
3 // This is NOT conventional
4 })
5 .controller('SomeCtrl', function($scope) {
6 // This is the conventional way to
7 // write a controller
8 })

One of the most confusing parts of angular is the issue of scope-creep. As we’re writing our webapps, sometimes we’ll find that the size of of controllers is growingly wildly out of control.

One method that we can reduce the size of our controller is by shifting the responsibility of handling the DOM and methods through the use of directives. Moving functionality into custom directives will greatly reduce the need to create functions to determine if we need to expose a particular view or format a value.

Since we’ll bind values on the $scope inside of the view, the controller doesn’t need to be responsible for holding on to value states needed for a particular DOM object.

For instance, we can remove the method in the controller that deals with showing values.

Let’s say we have a single login page that shows either a login form or a registration form depending upon a state a user has picked that we’ll call showLoginForm:

1 angular.module('myApp')
2 .controller('LoginCtrl', function($scope) {
3 // Show login form if true and show
4 // registration form if false
5 $scope.showLoginForm = true;
6 $scope.sendLogin = function() {}
7 $scope.sendRegister = function() {}
8 });

In our HTML we would use this like so:

1 <div ng-show="showLoginForm">
2 <form ng-submit="runLogin()"></form>
3 </div>
4 <div ng-show="!showLoginForm">
5 <form ng-submit="runRegister()"></form>
6 </div>

Although this is a particularly trivial example as we only have one extra variable in our $scope, the number of these values can grow exponentially large as our views grow more and more complex.

We can remove the value by using a directive. For instance:

 1 angular.module('myApp')
 2 .directive('loginForm', function() {
 3 return {
 4 scope: {
 5 onLogin: '&',
 6 onRegister: '&'
 7 },
 8 templateUrl: '/templates/loginRegForms.html',
 9 link: function(scope, ele, attrs) {
10 scope.showLoginForm = true;
11 scope.submitLogin = function() {
12 scope.onLogin({user: scope.loginUser});
13 }
14 scope.submitRegister = function() {
15 scope.onRegister({user: scope.newUser});
16 }
17 }
18 }
19 });
20 angular.module('myApp')
21 .controller('LoginCtrl', function($scope) {
22 $scope.sendLogin = function() {}
23 $scope.sendRegister = function() {}
24 });

We can call this directive in our view as we would with any directive:

1 <div login-form
2 on-login="sendLogin(user)"
3 on-register="sendRegister(user)"></div>

With our view variable safely tucked away in the directive, we no longer need to hold on to the view conditional in our controller. It’s a best-practice to keep our controllers thin and using directives allows us to do this efficiently.

Additionally, this makes it very easy to test the functionality of our login routes by isolating them inside of a directive.

Sharing data between controllers

We can share data between two controllers in a few different ways inside of Angular. We can nest our controllers underneath the same parent controller and allow each controller to independently modify the values of the parent controller’s $scope attribute or we can share a value inside of a service.

It’s more preferable to hold on to data inside of a service, but the more efficient method can be dependent upon the situation. For instance, inside of dialog box, it makes sense that we’ll hold on to the data that the dialog box is showing inside of a parent controller.

Directives

Knowing when to write a directive is as important as to knowing when not to write one. More often than not, it’s generally a good idea to write one. We’ll discuss why this is the case and how we to choose the places in our app where directives make sense to build one as well as when we shouldn’t.

It’s always better to err on the side of using directives over not using directives. As we’ve seen above, they reduce the amount of clutter inside of our controller.

They also have the side benefit of being much easier to test than testing controllers.

Directives do not always need to have a view template. Often times, they can simply serve as a shim to handle dealing with data underneath the view. The ngModelController is an example of when this comes in handy.

Testing

We always encourage testing inside of our apps. We constantly strive to write unit tests for any piece of functionality that has any level of complexity. This allows us to be confident about our code, no matter how small. Focusing on unit tests also enables us to be efficient with time and focus on functionality.

Once we’re confident we have started to settle on the core data complexity with our unit tests, we start to write end-to-end tests. End-to-end tests can be brittle and dependent upon the view so we usually leave these until later in the development process. Not only that, end-to-end tests generally run much slower than unit tests, so writing unit tests first allow us to focus on functionality with the same momentum as the development process.

We encourage writing tests for ALL parts of our tests. For more information about testing, check out the extensive testing chapter.

Angular Animation

Angular Animation

ngAnimate is a module created by the Angular team that gives our angular apps hooks into providing CSS and javascript.

There are several ways to make animations in an angular app:

	Using CSS3 Animations

 	Using JavaScript animations

 	Using CSS3 Transitions

We’ll discuss these three different methods of animating in this chapter and aim to give you a solid understanding of how to power your own custom animations.

Installation

Since 1.2.0, animations have been pulled out of the core of angular into it’s own module. In order to include animations in our angular app, we’ll need to install and reference it in our app.

We can download it from code.angularjs.org and save it in a place that we can reference it from our HTML, like js/vendor/angular-animate.js.

We can also install it using bower, which will place it in our usual bower directory. For more information about bower, see the bower chapter.

1 $ bower install --save angular-animate

We’ll need to reference this in our HTML after we reference angular itself.

1 <script src="js/vendor/angular.js"></script>
2 <script src="js/vendor/angular-animate.js"></script>

Lastly, we’ll need to reference the ngAnimate module as a dependency in our app module:

1 angular.module('myApp', ['ngAnimate']);

Now we are ready to take on animations with AngularJS.

How it works

The $animate service itself, by default applies two CSS classes for each animation event to the animated element. The $animate service supports several built-in angular directives that automatically support animation without needing any extra configuration. It allows us to build our own animations for our directives.

All of the pre-existing directives that support animation do so through monitoring events provided on the directive. For instance, when a new ngView enters and brings new content into the browser, this event is called the enter event for ngView.

The following is a list of directives and the events that they each fire at the different states. When defining our animations within the different states, we will use these events to define how our animations will work.

 	Directive
 	Events

 	ngRepeat
 	enter, leave, move

 	ngView
 	enter, leave

 	ngInclude
 	enter, leave

 	ngSwitch
 	enter, leave

 	ngIf
 	enter, leave

 	ngClass
 	add, remove

 	ngShow
 	add, remove

 	ngHide
 	add, remove

The $animate service attaches specific classes based upon the events that the directive emits in the form of ng-[EVENT] and ng-[EVENT]-active.

Automatically added classes

For the directives that fire the enter event, they will get a class of .ng-enter when the DOM is being updated. Angular will then add the ng-enter-active class which triggers the animation. ngAnimate will automatically detect the CSS code to determine when the animation is complete.

When the event is done, angular will remove both classes from the DOM element. This enables us to define animate-able properties to the DOM elements.

If the browser does not support CSS transitions or animations, then the animation will start and end immediately and the DOM will end up at it’s final state, with no CSS transitions/animation classes applied.

The same convention applies for all of the supported animation actions: enter, leave, move, add, and remove.

Using CSS3 Transitions

By far the easiest way to include animations in our app and works for all browsers except IE9 and earlier versions. For browsers that do not support CSS3 Transitions, this will gracefully fallback to the non-animated version of the app.

To do any CSS animation, we’ll need to make sure we include the classes we’ll be working with to the DOM element we’re interested in animating.

For instance, in the following demo we’ll look at animating the following element:

1 <div class="fadein"></div>

CSS3 Transitions are fully class-based, which means as long as we have classes that define the animation in our HTML the animation will be animated in the browser.

In order for us to achieve animations with classes, we’ll need to following the angular CSS naming conventions to define our CSS transitions.

CSS transitions are effects that let an element gradually change from one style to another style. To define an animation, we must specify the property we want to add an animation to as well as specify the duration of effect.

For instance, this will add a transition effect on the all of the properties on DOM elements with the .fadein class for a 2 second duration.

1 .fadein {
2 transition: 2s linear all;
3 -webkit-transition: 2s linear all;
4 -moz-transition: 2s linear all;
5 -o-transition: 2s linear all;
6 }

With this set, we can define properties on different states of the DOM element.

1 .fadein:hover {
2 width: 300px;
3 height: 300px;
4 }

With ngAnimate, our directives animations are started by angular adding the two classes, the initial ng-[EVENT] class and shortly thereafter, the ng-[EVENT]-active class.

To automatically allow the DOM elements from above transition with angular animation, we’ll modify the initial .fadein example from above to include the initial state class:

1 .fadein.ng-enter {
2 opacity: 0;
3 }
4 .fadein.ng-enter.ng-enter-active {
5 opacity: 1;
6 }

To actually run the animation, we’ll need to include the css definitions.

1 .fadein.ng-enter {
2 transition: 2s linear all;
3 -webkit-transition: 2s linear all;
4 -moz-transition: 2s linear all;
5 -o-transition: 2s linear all;
6 }

Using CSS3 Animations

CSS3 animations are more extensive and more complex than CSS3 transitions. They are supported by all major browsers exception IE9 and earlier versions. With CSS3 animations, we’ll use the same initial class ng-[EVENT], but we don’t need to define animation states in the ng-[EVENT]-active state as our CSS rules will handle the rest of the block.

The @keyframes rule is where the animation is created. Within the CSS element where we define the @keyframes rule, we’ll define the CSS styles that we want to be manipulated.

When we want to animate the DOM element, we’ll use the animation: to bind the @keyframe CSS property to apply the animation to the CSS element. When we bind the animation to the CSS element, we’ll need to specify both the name of the animation as well as the duration.

 	
 [image: information]
 	
 Remember to add the animation duration: If we forget to add the duration of the animation, it will not run as the duration will default to 0.

To create our @keyframes rule, we’ll need to give our keyframe a name and set the time periods of the where the properties should be throughout the animation.

 1 @keyframes firstAnimation {
 2 0% {
 3 color: yellow;
 4 }
 5 100% {
 6 color: black;
 7 }
 8 }
 9 /* For Chrome and Safari */
10 @-webkit-keyframes firstAnimation {
11 /* from is equivalent to 0% */
12 from {
13 color: yellow;
14 }
15 /* from is equivalent to 100% */
16 to {
17 color: black;
18 }
19 }

 	
 [image: information]
 	
 Using the keyword from is equivalent to setting the percentage to 0%. Using the keyword to is equivalent to setting the percentage to 100%.

We are not limited to 0% and 100%, we can provide animations in steps, such as at 10%, 15%, etc.

To assign this @keyframe property to the classes we want to animate, we’ll use the animation keyword that will apply the animation to the elements targeted by the CSS selector.

1 .fadein:hover {
2 -webkit-animation: 2s firstAnimation;
3 animation: 2s firstAnimation;
4 }

With ngAnimate, we’ll bind the firstAnimation to any elements that are targeted with the .fadein class. Angular will apply and remove the .ng-enter class for us automatically, so we can simply attach our event to the .fadein.ng-enter class:

1 .fadein.ng-enter {
2 -moz-animation: 2s firstAnimation;
3 -o-animation: 2s firstAnimation;
4 -webkit-animation: 2s firstAnimation;
5 animation: 2s firstAnimation;
6 }

Using JavaScript animations

JavaScript animation is different from the previous two ways to animate using angular in that we’ll set properties on the DOM element directly using javascript.

JavaScript animation is supported in all major browsers that enable javascript, so it’s a good choice if we want to offer animations on browsers that do not support CSS transitions/animations.

Instead of manipulating our CSS to animate elements, we’ll update our javascript to handle running animations for us.

The ngAnimate module adds the .animation method to our the module API that presents an interface to create our animations on top.

The animation() method takes two parameters:

	classname (string)

This is the classname that will match the class of the element to animate. For our examples thus far, the animation should be named: .fadein.

	animateFun (function)

The animate function is expected to return an object that includes functions for the different events that are fired by the directive where it’s used.

See the $animate API docs for detailed documentation on these functions.

 1 angular.module('myApp', ['ngAnimate'])
 2 .animation('.fadein', function() {
 3 return {
 4 enter: function(element, done) {
 5 // Run animation
 6
 7 return function(cancelled) {
 8 // Cancel animation
 9 }
10 }
11 }
12 });

The functions will all be called with the element and the callback function (done()). Inside these functions, it’s a free-for-all in terms of what we do with the element. The only requirement is that we call done() when we are done with the animation.

Inside these functions, we can return an end function that will be called when the animation is complete OR the animation has been canceled.

When the animation is triggered, $animate will look for the matching animation function for the event. If it finds a function that matches the event, then it will execute it.

Animating built-in directives

Animating ngRepeat

The ngRepeat directive fires the events:

 	Action
 	Event name

 	An item was inserted
 	enter

 	to the list of items
 	

 	An item was removed
 	leave

 	to the list of items
 	

 	An item was moved in
 	move

 	the list of items
 	

For the three examples, we’ll work with the HTML as follows:

1 <div ng-controller="HomeCtrl">
2
3 <li class="fadein" ng-repeat="r in roommates">
4 {{ r }}
5
6 </div>

We’ll assume that the HomeCtrl is defined as such:

 1 angular.module('myApp', ['ngAnimate'])
 2 .controller('HomeCtrl', function($scope) {
 3 $scope.roommates = [
 4 'Ari', 'Q', 'Sean', 'Anand'
 5];
 6 setTimeout(function() {
 7 $scope.roommates.push('Ginger');
 8 $scope.$apply(); // Trigger a digest
 9
10 setTimeout(function() {
11 $scope.roommates.shift();
12 $scope.$apply(); // Trigger digest
13 }, 2000);
14 }, 1000);
15 });

In these examples, we have a list of roommates that consists of four elements. After a second, we’ll have a fifth added. Two seconds later, we’ll remove the first element.

CSS3 Transitions

To animate items in the ngRepeat list, we’ll need to make sure to add the CSS class that will present the initial state of the element and the class that will define the final state for both of the enter and edit states.

We’ll start by defining the animation properties on the initial class(es):

1 .fadein.ng-enter,
2 .fadein.ng-leave {
3 transition: 2s linear all;
4 -webkit-transition: 2s linear all;
5 -moz-transition: 2s linear all;
6 -o-transition: 2s linear all;
7 }

Now, we can simply define the stages of the initial and final css properties in the animation. Here, we’ll fade the element in with green text and turn the text black at the final stage of the enter animation. In the leave (item removal) animation, we’ll reverse the properties:

 1 .fadein.ng-enter {
 2 opacity: 0;
 3 color: green;
 4 }
 5 .fadein.ng-enter.ng-enter-active {
 6 opacity: 1;
 7 color: black;
 8 }
 9 .fadein.ng-leave {}
10 .fadein.ng-leave.ng-leave-active {
11 opacity: 0;
12 }

CSS3 Keyframe animation

When using keyframe animation, we don’t need to define a start and an end class, instead we’ll define only a single selector that includes the animation CSS key.

We can start by defining the animation properties for the keyframes:

 1 @keyframes animateView-enter {
 2 from {opacity:0;}
 3 to {opacity:1;}
 4 }
 5 @-webkit-keyframes animateView-enter {
 6 from {opacity:0;}
 7 to {opacity:1;}
 8 }
 9 @keyframes animateView-leave {
10 from {opacity: 1;}
11 to {opacity: 0;}
12 }
13 @-webkit-keyframes animateView-leave {
14 from {opacity: 1;}
15 to {opacity: 0;}
16 }

With the keyframe set, we can simply attach the animation to the CSS classes added by ngAnimate:

 1 .fadein.ng-enter {
 2 -webkit-animation: 2s fadein-enter-animation;
 3 -moz-animation: 2s fadein-enter-animation;
 4 -o-animation: 2s fadein-enter-animation;
 5 animation: 2s fadein-enter-animation;
 6 }
 7 .fadein.ng-leave {
 8 -webkit-animation: 2s fadein-leave-animation;
 9 -moz-animation: 2s fadein-leave-animation;
10 -o-animation: 2s fadein-leave-animation;
11 animation: 2s fadein-leave-animation;
12 }

JavaScript animation

When animating with javascript, we’ll need to define the enter and leave properties on our animation description object.

 1 angular.module('myApp')
 2 .animation('.fadein', function() {
 3 return {
 4 enter: function(element, done) {
 5 // Raw animation without jQuery
 6 // This is much simpler with jQuery
 7 var op = 0, timeout,
 8 animateFn = function() {
 9 op += 10;
10 element.css('opacity', op/100);
11 if (op >= 100) {
12 clearInterval(timeout);
13 done();
14 }
15 };
16
17 // Set initial opacity to 0
18 element.css('opacity', 0);
19 timeout = setInterval(animateFn, 100);
20 },
21 leave: function(element, done) {
22 var op = 100,
23 timeout,
24 animateFn = function() {
25 op-=10;
26 element.css('opacity', op/100);
27 if (op <= 0) {
28 clearInterval(timeout);
29 done();
30 }
31 };
32 element.css('opacity', 100);
33 timeout = setInterval(animateFn, 100);
34 }
35 }
36 });

Animating ngView

The ngView directive fires the events:

 	Action
 	Event name

 	New content is ready
 	enter

 	for the view
 	

 	Existing content is
 	leave

 	ready to be hidden
 	

For the three examples, we’ll work with the HTML as follows:

1 Home
2 Second view
3 Third view
4 <div class="animateView" ng-view></div>

As we’re working with the ng-view directive, we’re working with routes inside of Angular. For more information about routes, check out the routing chapter. The download for angular-routing is here.

For the following examples, we’ll set our routes to be defined as:

 1 angular.module('myApp', ['ngAnimate', 'ngRoute'])
 2 .config(function($routeProvider) {
 3 $routeProvider.when('/', {
 4 template: '<h2>One</h2>'
 5 }).when('/two', {
 6 template: '<h2>Two</h2>'
 7 }).when('/three', {
 8 template: '<h2>Three</h2>'
 9 });
10 })

These examples have three routes that show a different view.

CSS3 Transitions

To animate items in the ngView list, we’ll need to add the CSS class that will define the initial state of the element and the class that will define the final state for both of the enter and edit states.

1 .animateView.ng-enter,
2 .animateView.ng-leave {
3 transition: 2s linear all;
4 -webkit-transition: 2s linear all;
5 -moz-transition: 2s linear all;
6 -o-transition: 2s linear all;
7 }

Now, we can simply define the stages of the initial and final css properties in the animation. Here, we’ll fade the element in with green text and turn the text black at the final stage of the enter animation. In the leave (item removal) animation, we’ll reverse the properties:

 1 .animateView.ng-enter {
 2 opacity: 0;
 3 color: green;
 4 }
 5 .animateView.ng-enter.ng-enter-active {
 6 opacity: 1;
 7 color: black;
 8 }
 9 .animateView.ng-leave {}
10 .animateView.ng-leave.ng-leave-active {
11 opacity: 0;
12 }

CSS3 Keyframe animation

We’ll start by adding the @keyframe animations that we’ll define for the animation.

 1 @keyframes animateView-enter {
 2 from {opacity:0;}
 3 to {opacity:1;}
 4 }
 5 @-webkit-keyframes animateView-enter {
 6 from {opacity:0;}
 7 to {opacity:1;}
 8 }
 9 @keyframes animateView-leave {
10 from {opacity: 1;}
11 to {opacity: 0;}
12 }
13 @-webkit-keyframes animateView-leave {
14 from {opacity: 1;}
15 to {opacity: 0;}
16 }

All we need to do to apply the animation is include the animation CSS style on our class:

 1 .animateView.ng-enter {
 2 -webkit-animation: 2s animateView-enter;
 3 -moz-animation: 2s animateView-enter;
 4 -o-animation: 2s animateView-enter;
 5 animation: 2s animateView-enter;
 6 }
 7 .animateView.ng-leave {
 8 -webkit-animation: 2s animateView-leave;
 9 -moz-animation: 2s animateView-leave;
10 -o-animation: 2s animateView-leave;
11 animation: 2s animateView-leave;
12 }

JavaScript animation

First download and include jQuery in the head of the document.

When animating with javascript, we’ll need to define the enter and leave properties on our animation description object.

 1 angular.module('myApp')
 2 .animation('.animateView', function() {
 3 return {
 4 enter: function(element, done) {
 5 // Example to show how to animate
 6 // with jQuery. Note, this requires
 7 // jQuery to be included in the HTML
 8 $(element).css({
 9 opacity: 0
10 });
11 $(element).animate({
12 opacity: 1
13 }, done);
14 },
15 leave: function(element, done) {
16 done();
17 }
18 }
19 });

Animating ngInclude

The ngInclude directive fires the events:

 	Action
 	Event name

 	New content is ready
 	enter

 	for the view
 	

 	Existing content is
 	leave

 	ready to be hidden
 	

For the three examples, we’ll work with the HTML as follows:

<div ng-init="template.url='/home.html'" ng-controller="HomeCtrl" lang="html">
 <button ng-click="template.url='/home.html'" lang="html">
 Home
 </button>
 <button ng-click="template.url='/second.html'" lang="html">
 Second
 </button>
 <button ng-click="template.url='/third.html'" lang="html">
 Third
 </button>
 <div class="animateInclude" ng-include="template.url" lang="html">
 </div>
</div>

We’ll also include the inline templates (for demo purposes) in our page. Alternatively, we could set these views to be fetched from a remote server.

1 <script type="text/ng-template" id="/home.html">
2 Home Template
3 </script>
4 <script type="text/ng-template" id="/second.html">
5 Second Template
6 </script>
7 <script type="text/ng-template" id="/third.html">
8 Third Template
9 </script>

CSS3 Transitions

To animate items in the ngInclude, we’ll need to add the CSS class that will define the initial state of the element and the class that will define the final state for both of the enter and edit states.

1 .animateInclude.ng-enter,
2 .animateInclude.ng-leave {
3 transition: 2s linear all;
4 -webkit-transition: 2s linear all;
5 -moz-transition: 2s linear all;
6 -o-transition: 2s linear all;
7 }

Now, we can simply define the stages of the initial and final css properties in the animation. Here, we’ll fade the element in with green text and turn the text black at the final stage of the enter animation. In the leave (item removal) animation, we’ll reverse the properties:

 1 .animateInclude.ng-enter {
 2 opacity: 0;
 3 color: green;
 4 }
 5 .animateInclude.ng-enter.ng-enter-active {
 6 opacity: 1;
 7 color: black;
 8 }
 9 .animateInclude.ng-leave {}
10 .animateInclude.ng-leave.ng-leave-active {
11 opacity: 0;
12 }

CSS3 Animations

We’ll start by adding the @keyframe animations that we’ll define for the animation.

 1 @keyframes animateInclude-enter {
 2 from {opacity:0;}
 3 to {opacity:1; color: green}
 4 }
 5 @-webkit-keyframes animateInclude-enter {
 6 from {opacity:0;}
 7 to {opacity:1; color: green}
 8 }
 9 @keyframes animateInclude-leave {
10 from {opacity: 1;}
11 to {opacity: 0; color: black}
12 }
13 @-webkit-keyframes animateInclude-leave {
14 from {opacity: 1;}
15 to {opacity: 0; color: black}
16 }

All we need to do to apply the animation is include the animation CSS style on our classes:

 1 .animateInclude.ng-enter {
 2 -webkit-animation: 2s animateInclude-enter;
 3 -moz-animation: 2s animateInclude-enter;
 4 -o-animation: 2s animateInclude-enter;
 5 animation: 2s animateInclude-enter;
 6 }
 7 .animateInclude.ng-leave {
 8 -webkit-animation: 2s animateInclude-leave;
 9 -moz-animation: 2s animateInclude-leave;
10 -o-animation: 2s animateInclude-leave;
11 animation: 2s animateInclude-leave;
12 }

JavaScript animation

When animating with javascript, we’ll need to define the enter and leave properties on our animation description object.

 1 angular.module('myApp')
 2 .animation('.animateInclude', function() {
 3 return {
 4 enter: function(element, done) {
 5 // Example to show how to animate
 6 // with jQuery. Note, this requires
 7 // jQuery to be included in the HTML
 8 $(element).css({
 9 opacity: 0
10 });
11 $(element).animate({
12 opacity: 1
13 }, done);
14 },
15 leave: function(element, done) {
16 done();
17 }
18 }
19 });

Animating ngSwitch

The ngSwitch directive fires the events:

 	Action
 	Event name

 	New content is ready
 	enter

 	for the view
 	

 	Existing content is
 	leave

 	ready to be hidden
 	

The ngSwitch directive is similar to our previous examples for these examples, we’ll work with the HTML as follows that uses the ng-switch directive:

<div ng-init="template='home'" ng-controller="HomeCtrl" lang="html">
 <button ng-click="template='home'" lang="html">Home</button>
 <button ng-click="template='second'" lang="html">Second</button>
 <button ng-click="template='third'" lang="html">Third</button>
 <div ng-switch="template" lang="html">
 <div class="animateSwitch" ng-switch-when="home" lang="html">
 <h1 lang="html">Home</h1>
 </div>
 <div class="animateSwitch" ng-switch-when="second" lang="html">
 <h1 lang="html">Second</h1>
 </div>
 <div class="animateSwitch" ng-switch-when="third" lang="html">
 <h1 lang="html">Home</h1>
 </div>
 </div>
 </div>

CSS3 Transitions

To animate items in the ngSwitch, we’ll need to add the CSS class that will define the initial state of the element and the class that will define the final state for both of the enter and edit states.

1 .animateSwitch.ng-enter,
2 .animateSwitch.ng-leave {
3 transition: 2s linear all;
4 -webkit-transition: 2s linear all;
5 -moz-transition: 2s linear all;
6 -o-transition: 2s linear all;
7 }

Now, we can simply define the stages of the initial and final css properties in the animation. Here, we’ll fade the element in with green text and turn the text black at the final stage of the enter animation. In the leave (item removal) animation, we’ll reverse the properties:

 1 .animateSwitch.ng-enter {
 2 opacity: 0;
 3 color: green;
 4 }
 5 .animateSwitch.ng-enter.ng-enter-active {
 6 opacity: 1;
 7 color: black;
 8 }
 9 .animateSwitch.ng-leave {}
10 .animateSwitch.ng-leave.ng-leave-active {
11 opacity: 0;
12 }

CSS3 Animations

We’ll start by adding the @keyframe animations that we’ll define for the animation.

 1 @keyframes animateSwitch-enter {
 2 from {opacity:0;}
 3 to {opacity:1; color: green}
 4 }
 5 @-webkit-keyframes animateSwitch-enter {
 6 from {opacity:0;}
 7 to {opacity:1; color: green}
 8 }
 9 @keyframes animateSwitch-leave {
10 from {opacity: 1;}
11 to {opacity: 0; color: black}
12 }
13 @-webkit-keyframes animateSwitch-leave {
14 from {opacity: 1;}
15 to {opacity: 0; color: black}
16 }

All we need to do to apply the animation is include the animation CSS style on our classes:

 1 .animateSwitch.ng-enter {
 2 -webkit-animation: 2s animateSwitch-enter;
 3 -moz-animation: 2s animateSwitch-enter;
 4 -o-animation: 2s animateSwitch-enter;
 5 animation: 2s animateSwitch-enter;
 6 }
 7 .animateSwitch.ng-leave {
 8 -webkit-animation: 2s animateSwitch-leave;
 9 -moz-animation: 2s animateSwitch-leave;
10 -o-animation: 2s animateSwitch-leave;
11 animation: 2s animateSwitch-leave;
12 }

JavaScript animation

When animating with javascript, we’ll need to define the enter and leave properties on our animation description object.

 1 angular.module('myApp')
 2 .animation('.animateSwitch', function() {
 3 return {
 4 enter: function(element, done) {
 5 // Example to show how to animate
 6 // with jQuery. Note, this requires
 7 // jQuery to be included in the HTML
 8 $(element).css({
 9 opacity: 0
10 });
11 $(element).animate({
12 opacity: 1
13 }, done);
14 },
15 leave: function(element, done) {
16 done();
17 }
18 }
19 });

Animating ngIf

The ngSwitch directive fires the events:

 	Action
 	Event name

 	Fired after ngIf contents
 	enter

 	change and the new DOM
 	

 	element is injected in
 	

 	Fired just before the ngIf
 	leave

 	contents are removed
 	

For the following ngIf examples, we’re going to work with the HTML:

<div ng-init="show=false" ng-controller="HomeCtrl" lang="html">
 <button ng-click="show=!show" lang="html">Show</button>
 <div ng-if="show" class="animateNgIf" lang="html">
 <h2 lang="html">Show me</h2>
 </div>
 </div>

CSS3 Transitions

To animate items in the ngIf, we’ll need to add the CSS class that will define the initial state of the element and the class that will define the final state for both of the enter and edit states.

1 .animateNgIf.ng-enter,
2 .animateNgIf.ng-leave {
3 transition: 2s linear all;
4 -webkit-transition: 2s linear all;
5 -moz-transition: 2s linear all;
6 -o-transition: 2s linear all;
7 }

Now, we can simply define the stages of the initial and final css properties in the animation. Here, we’ll fade the element in with green text and turn the text black at the final stage of the enter animation. In the leave (item removal) animation, we’ll reverse the properties:

 1 .animateNgIf.ng-enter {
 2 opacity: 0;
 3 color: green;
 4 }
 5 .animateNgIf.ng-enter.ng-enter-active {
 6 opacity: 1;
 7 color: black;
 8 }
 9 .animateNgIf.ng-leave {}
10 .animateNgIf.ng-leave.ng-leave-active {
11 opacity: 0;
12 }

CSS3 Animations

We’ll start by adding the @keyframe animations that we’ll define for the animation.

 1 @keyframes animateNgIf-enter {
 2 from {opacity:0;}
 3 to {opacity:1;}
 4 }
 5 @-webkit-keyframes animateNgIf-enter {
 6 from {opacity:0;}
 7 to {opacity:1;}
 8 }
 9 @keyframes animateNgIf-leave {
10 from {opacity: 1;}
11 to {opacity: 0;}
12 }
13 @-webkit-keyframes animateNgIf-leave {
14 from {opacity: 1;}
15 to {opacity: 0;}
16 }

All we need to do to apply the animation is include the animation CSS style on our classes:

 1 .animateNgIf.ng-enter {
 2 -webkit-animation: 2s animateNgIf-enter;
 3 -moz-animation: 2s animateNgIf-enter;
 4 -o-animation: 2s animateNgIf-enter;
 5 animation: 2s animateNgIf-enter;
 6 }
 7 .animateNgIf.ng-leave {
 8 -webkit-animation: 2s animateNgIf-leave;
 9 -moz-animation: 2s animateNgIf-leave;
10 -o-animation: 2s animateNgIf-leave;
11 animation: 2s animateNgIf-leave;
12 }

JavaScript animation

When animating with javascript, we’ll need to define the enter and leave properties on our animation description object.

 1 angular.module('myApp')
 2 .animation('.animateNgIf', function() {
 3 return {
 4 enter: function(element, done) {
 5 // Example to show how to animate
 6 // with jQuery. Note, this requires
 7 // jQuery to be included in the HTML
 8 $(element).css({
 9 opacity: 0
10 });
11 $(element).animate({
12 opacity: 1
13 }, done);
14 },
15 leave: function(element, done) {
16 done();
17 }
18 }
19 });

Animating ngClass

It’s possible to animate the behavior that happens when classes are changed in the view. When a CSS class changes (such as in the ngShow and ngHide directives), $animate notices and triggers animations for both when the classes are added and old ones are removed.

Instead of using the naming convention for entering, we’ll use a new CSS convention for ngClass where we postfix the new class as: [CLASSNAME]-add and [CLASSNAME]-remove`.

Similar to the enter events above, the [CLASSNAME]-add-active and the [CLASSNAME]-remove-active will get added at the appropriate times for the specific event.

When we are animating on the classes, the animation is fired first and when it’s complete, the final class is added. When a class is removed, the class will remain on the element until the animation is complete.

The ngClass directive fires the events:

 	Action
 	Event name

 	After ngClass evaluates to
 	add

 	a truthy value and before
 	

 	the class has been added
 	

 	Fired just before the class
 	remove

 	is removed
 	

For the following ngClass examples, we’re going to work with the HTML:

<div ng-init="grow=false" ng-controller="HomeCtrl" lang="html">
 <button ng-click="grow=!grow" lang="html">Grow</button>
 <div ng-class="{grown:grow}" class="animateMe" lang="html">
 <h2 lang="html">Grow me</h2>
 </div>
 </div>

CSS3 Transitions

To animate items in the ngClass, we’ll need to add the CSS class that will define the initial state of the element and the class that will define the final state for both of the enter and edit states.

1 .animateMe.grown-add,
2 .animateMe.grown-remove {
3 transition: 2s linear all;
4 -webkit-transition: 2s linear all;
5 -moz-transition: 2s linear all;
6 -o-transition: 2s linear all;
7 }

Now, we can simply define the stages of the initial and final css properties in the animation.

 1 .grown {font-size: 50px;}
 2 .animateMe.grown-add {
 3 font-size: 16px;
 4 }
 5 .animateMe.grown-add.grown-add-active {
 6 font-size: 50px;
 7 }
 8 .animateMe.grown-remove {}
 9 .animateMe.grown-remove.grown-remove-active {
10 font-size: 16px;
11 }

CSS3 Animations

We’ll start by adding the @keyframe animations that we’ll define for the animation. Here, we’ll add a background color to highlight the text. We’ll also define the remove animation for when we pull the highlight away from the text:

 1 @keyframes animateMe-add {
 2 from {font-size: 16px;}
 3 to {font-size: 50px;}
 4 }
 5 @-webkit-keyframes animateMe-add {
 6 from {font-size: 16px;}
 7 to {font-size: 50px;}
 8 }
 9 @keyframes animateMe-remove {
10 to {font-size: 50px;}
11 from {font-size: 16px;}
12 }
13 @-webkit-keyframes animateMe-remove {
14 to {font-size: 50px;}
15 from {font-size: 16px;}
16 }

All we need to do to apply the animation is include the animation CSS style on our classes:

 1 .animateMe.grown-add {
 2 -webkit-animation: 2s animateMe-add;
 3 -moz-animation: 2s animateMe-add;
 4 -o-animation: 2s animateMe-add;
 5 animation: 2s animateMe-add;
 6 }
 7 .animateMe.grown-remove {
 8 -webkit-animation: 2s animateMe-remove;
 9 -moz-animation: 2s animateMe-remove;
10 -o-animation: 2s animateMe-remove;
11 animation: 2s animateMe-remove;
12 }

JavaScript animation

When animating with javascript, we’ll need to define the addClass and removeClass properties on our animation description object.

 1 angular.module('myApp')
 2 .animation('.animateMe', function() {
 3 return {
 4 addClass: function(ele, clsName, done)
 5 {
 6 // Example to show how to animate
 7 // with jQuery. Note, this requires
 8 // jQuery to be included in the HTML
 9 if (clsName === 'grown') {
10 $(ele).animate({
11 'font-size': '50px'
12 }, 2000, done);
13 } else { done(); }
14 },
15 removeClass: function(ele, clsName, done)
16 {
17 if (clsName === 'grown') {
18 $(ele).animate({
19 'font-size': '16'
20 }, 2000, done);
21 } else { done(); }
22 }
23 }
24 });

Animating ngShow/ngHide

The ngShow and ngHide directives use the .ng-hide class when showing or hiding elements. It’s possible to to add animations for between the showing and hiding of the DOM elements.

When we are animating on the classes, the animation is fired first and when it’s complete, the final .ng-hide is added to the DOM element.

Because the ng-hide directive will still be applied to the DOM element when we’re removing the ng-hide class, we’ll never get see our animation until it’s complete. Thus, we’ll need to tell the CSS to display our class and not cascade.

The ngShow and ngHide directives fire the events:

 	Action
 	Event name

 	After ngClass evaluates to
 	add

 	a truthy value and before
 	

 	the class has been added
 	

 	Fired just before the class
 	remove

 	is removed
 	

For the following ngHide examples, we’re going to work with the HTML:

<div ng-init="show=false" ng-controller="HomeCtrl" lang="html">
 <button ng-click="show=!show" lang="html">Show</button>
 <div ng-show="show" class="animateMe" lang="html">
 <h2 lang="html">Show me</h2>
 </div>
 </div>

CSS3 Transitions

To animate items in the ngHide, we’ll need to add the CSS class that will define the initial state of the element and the class that will define the final state for both of the enter and edit states.

1 .animateMe.ng-hide-add,
2 .animateMe.ng-hide-remove {
3 transition: 2s linear all;
4 -webkit-transition: 2s linear all;
5 -moz-transition: 2s linear all;
6 -o-transition: 2s linear all;
7 display: block !important;
8 }

Notice the last line in the CSS block. This tells the CSS to render this class and no other fallback class property for the display property. With out this, the element won’t show.

Now, we can simply define the stages of the initial and final css properties in the animation.

 1 .animateMe.ng-hide-add {
 2 opacity: 1;
 3 }
 4 .animateMe.ng-hide-add.ng-hide-add-active
 5 {
 6 opacity: 0;
 7 }
 8 .animateMe.ng-hide-remove {
 9 opacity: 0;
10 }
11 .animateMe.ng-hide-remove.ng-hide-remove-active {
12 opacity: 1;
13 }

CSS3 Animations

We’ll start by adding the @keyframe animations that we’ll define for the animation. Here, we’ll add a background color to highlight the text. We’ll also define the remove animation for when we pull the highlight away from the text:

 1 @keyframes animateMe-add {
 2 from {opacity: 1;}
 3 to {opacity: 0;}
 4 }
 5 @-webkit-keyframes animateMe-add {
 6 from {opacity: 1;}
 7 to {opacity: 0;}
 8 }
 9 @keyframes animateMe-remove {
10 from {opacity:0;}
11 to {opacity:1;}
12 }
13 @-webkit-keyframes animateMe-remove {
14 from {opacity:0;}
15 to {opacity:1;}
16 }

All we need to do to apply the animation is include the animation CSS style on our classes:

 1 .animateMe.ng-hide-add {
 2 -webkit-animation: 2s animateMe-add;
 3 -moz-animation: 2s animateMe-add;
 4 -o-animation: 2s animateMe-add;
 5 animation: 2s animateMe-add;
 6 }
 7 .animateMe.ng-hide-remove {
 8 -webkit-animation: 2s animateMe-remove;
 9 -moz-animation: 2s animateMe-remove;
10 -o-animation: 2s animateMe-remove;
11 animation: 2s animateMe-remove;
12 display: block !important;
13 }

JavaScript animation

When animating with javascript, we’ll need to define the addClass and removeClass properties on our animation description object.

 1 angular.module('myApp')
 2 .animation('.animateMe', function() {
 3 return {
 4 addClass: function(ele, clsName, done)
 5 {
 6 // Example to show how to animate
 7 // with jQuery. Note, this requires
 8 // jQuery to be included in the HTML
 9 if (clsName === 'ng-hide') {
10 $(ele).animate({
11 'opacity': 0
12 }, 2000, done);
13 } else { done(); }
14 },
15 removeClass: function(ele, clsName, done)
16 {
17 if (clsName === 'ng-hide') {
18 $(ele).css('opacity', 0);
19 // Force the removal of the ng-hide
20 // class so we can actually show the
21 // animation
22 $(ele).removeClass('ng-hide');
23 $(ele).animate({
24 'opacity': 1
25 }, 2000, done);
26 } else { done(); }
27 }
28 }
29 });

Building custom animations

The $animate service provides hooks for us to implement our own custom animation inside of our own directives. After injecting the $animate service in our own apps, we can use the exposed events to trigger associated functions on the $animate object for each event.

To get started with animations in our own directives, we’ll need to inject the $animate service in our directives.

 1 angular.module('myApp', ['ngAnimate'])
 2 .directive('myDirective', function($animate) {
 3 return {
 4 template: '<div class="myDirective"></div>',
 5 link: function(scope, ele, attrs) {
 6 // Add animations here
 7 // for instance:
 8 $animate['addClass'](element, 'ng-hide');
 9 }
10 }
11 });

Now that we have our directive with $animation injected, we can bind events to the directive and start showing our animations.

With our directive set up, we can now create an animation that we can correspond with our directive calling the $animate function.

 1 angular.module('myApp')
 2 .animation('.scrollerAnimation', function() {
 3 return {
 4 animateFun: function(element, done) {
 5 // We are free to do what we want inside
 6 // this function, but we must call
 7 // done to let angular know we're done
 8 // animating
 9 }
10 }
11 });

The $animate service exposes several methods to provide hooks into the animation events for the built-in directives. These events that are exposed as hooks in the $animate service are:

	enter

 	leave

 	move

 	addClass

 	removeClass

The $animate service provides these events as functions that enable us to control how we work with them from within our own directives.

addClass()

The addClass() method triggers a custom animation event based off the ‘className’ variable and attaches the ‘className’ value to the element as a CSS class. When adding a class to a DOM element, the $animate service will add a suffix to the className with -add to allow for us to set up animation.

Note: If there are no CSS transitions or keyframe animations defined on the CSS selector: [className]-add, then it won’t trigger the animation, it will only add the class.

The addClass() method takes three parameters:

	element (jQuery/jqLite element)

This is the element that will be animated.

	className (string)

This is the CSS class that will be animated and attached to the element.

	done (function)

This is the callback function that will be called when the animation has completed.

 1 angular.module('myApp', ['ngAnimate'])
 2 .directive('myDirective', function($animate) {
 3 return {
 4 template: '<div class="myDirective"></div>',
 5 link: function(scope, ele, attrs) {
 6 ele.bind('click', function() {
 7 $animate.addClass(ele, 'greenlight');
 8 });
 9 }
10 }
11 });

Calling the addClass() method will run through the following steps:

	Run any javascript-defined animations on the element

 	The [className]-add class is added to the element

 	$animate scans the CSS styles for the transition/animation duration and delay properties

 	The [className]-add-active class is added to the element’s classList (triggering the CSS animation)

 	$animate waits for the defined duration to complete

 	The animation ends and $animate removes the two added classes [className]-add and [className]-add-active

 	The className class is added to the element

 	The done() callback function is fired (if defined)

removeClass()

The removeClass() method triggers a custom animation event based on the className and then removes the CSS class provided by the CSS className value. When removing a class to a DOM element, the $animate service will add a suffix to the className with -remove to allow for us to set up animation.

Note: If there are no CSS transitions or keyframe animations defined on the CSS selector: [className]-remove, then it won’t trigger the animation, it will only add the class.

The removeClass() method takes three parameters:

	element (jQuery/jqLite element)

This is the element that will be animated.

	className (string)

This is the CSS class that will be animated and removed from the element.

	done (function)

This is the callback function that will be called when the animation has completed.

 1 angular.module('myApp', ['ngAnimate'])
 2 .directive('myDirective', function($animate) {
 3 return {
 4 template: '<div class="myDirective"></div>',
 5 link: function(scope, ele, attrs) {
 6 ele.bind('click', function() {
 7 $animate.addClass(ele, 'greenlight');
 8 });
 9 }
10 }
11 });

A call to the removeClass() animation function will cause the following steps:

	Run any javascript-defined animations on the element

 	The [className]-remove class is added to the element

 	$animate scans the CSS styles for the transition/animation duration and delay properties

 	The [className]-remove-active class is added to the element’s classList (triggering the CSS animation)

 	$animate waits for the defined duration to complete

 	The animation ends and $animate removes the three classes [className], [className]-add and [className]-add-active

 	The done() callback function is fired (if defined)

enter()

The enter() method appends the element to the parent element in the DOM and then runs the enter animation. When the animation has started, $animation service will add the classes ng-enter and ng-enter-active. This will give the directive a chance to set up the animation.

The enter() method takes 4 parameters:

	element (jQuery/jqLite element)

This is the element that will be animated.

	parent (jQuery/jqLite element)

This is the parent element of the element that will be the focus of the enter animation.

	after (jQuery/jqLite element)

This is the sibling element of the element that will be the focus of the enter animation. This is the previous element.

	done (function)

This is the callback function that will be called when the animation is complete, if defined.

 1 angular.module('myApp', ['ngAnimate'])
 2 .directive('myDirective', function($animate) {
 3 return {
 4 template: '<div class="myDirective">' +
 5 '<h2>Hi</h2></div>',
 6 link: function(scope, ele, attrs) {
 7 ele.bind('click', function() {
 8 $animate.enter(ele, ele.parent());
 9 });
10 }
11 }
12 });

A call to the enter() animation function will cause the following steps to run:

	The element is inserted into the parent element or beside the after element

 	$animate runs any JavaScript-defined animations on the element.

 	The .ng-enter class is added to the element’s classList.

 	$animate scans the CSS styles for the transition/animation duration and delay properties

 	The .ng-enter-active class is added to the element’s classList (triggers the animation).

 	$animate waits for the defined duration to complete

 	The animation ends and $animate removes both of the classes .ng-enter and .ng-enter-active from the element.

 	The done() callback function is fired (if defined)

leave()

The leave() method runs the leave animation. When it’s done running, it removes the element from the DOM. When the animation has started, it will add the .ng-leave and .ng-leave-active classes to the element.

The leave() method takes 2 parameters:

	element (jQuery/jqLite element)

This is the element that will be animated.

	done (function)

This is the callback function that will be called when the animation is complete, if defined.

 1 angular.module('myApp', ['ngAnimate'])
 2 .directive('myDirective', function($animate) {
 3 return {
 4 template: '<div class="myDirective">' +
 5 '<h2>Hi</h2></div>',
 6 link: function(scope, ele, attrs) {
 7 ele.bind('click', function() {
 8 $animate.leave(ele);
 9 });
10 }
11 }
12 });

A call to the leave() animation function will cause the following steps to run:

	$animate runs any JavaScript-defined animations on the element.

 	The .ng-leave class is added to the element’s classList.

 	$animate scans the CSS styles for the transition/animation duration and delay properties

 	The .ng-leave-active class is added to the element’s classList (triggers the animation).

 	$animate waits for the defined duration to complete

 	The animation ends and $animate removes both of the classes .ng-leave and .ng-leave-active from the element.

 	The element is removed from the DOM

 	The done() callback function is fired (if defined)

move()

The move() function fires the move DOM animation. Before the animation starts, the $animate service will either append it into the parent container or add the element directive after the element, if present. Once the animation has started, the .ng-move and .ng-move-active will be added for the duration of the animation.

The move() method takes 4 parameters:

	element (jQuery/jqLite element)

This is the element that will be animated.

	parent (jQuery/jqLite element)

This is the parent element of the element that will be the focus of the move animation.

	after (jQuery/jqLite element)

This is the sibling element of the element that will be the focus of the enter animation. This is the previous element.

	done (function)

This is the callback function that will be called when the animation is complete, if defined.

 1 angular.module('myApp', ['ngAnimate'])
 2 .directive('myDirective', function($animate) {
 3 return {
 4 template: '<div class="myDirective">' +
 5 '<h2>Hi</h2></div>',
 6 link: function(scope, ele, attrs) {
 7 ele.bind('click', function() {
 8 $animate.move(ele, ele.parent());
 9 });
10 }
11 }
12 });

A call to the move() animation function will cause the following steps to run:

	The element is moved into the parent element or beside the after element

 	$animate runs any JavaScript-defined animations on the element.

 	The .ng-move class is added to the element’s classList.

 	$animate scans the CSS styles for the transition/animation duration and delay properties

 	The .ng-move-active class is added to the element’s classList (triggers the animation).

 	$animate waits for the defined duration to complete

 	The animation ends and $animate removes both of the classes .ng-move and .ng-move-active from the element.

 	The done() callback function is fired (if defined)

Integrating with third-party libraries

Animate.css

The Animate.css library provides a bunch of cool, fun, and cross-browser animations out of the box. It’s a great library that gives a lot of power without needing to do much work.

Luckily, the Angular community has provided a slick method of including the Animate.css classes into our angular app. To use the Animate.css shim, download the animate.css and animate.js from https://github.com/yearofmoo/ngAnimate-animate.css. Reference both of them in our HTML, like so:

1 <!-- In the HEAD of our HTML -->
2 <link rel="stylesheet" type="text/css" href="css/animate.css">
3 <!-- In the BODY of our HTML -->
4 <script type="text/javascript" src="js/vendor/animate.js"></script>

Now, instead of requiring ngAnimate as a dependency for our app, we can simply include ngAnimate-animate.css as a dependency. This is because the ngAnimate-animate.css module requires the ngAnimate module by default.

With this set, we can simply reference the animate classes with the ng-class directive. For instance:

1 <div class="animateMe"
2 ng-class="{'dn-fade':dn_fade}">
3 </div>

For a list of every animation possibility, check out the README.

TweenMax/TweenLite

TweenLite and TweenMax are fantastic libraries. They are a slick library that was modeled after the ActionScript animation properties. To use the library, we’ll need to make sure we download the Greensock library.

Download the library from Greensock and store it in a place accessible to your index.html. We recommend storing it in js/vendor/TweenMax.min.js. We’ll then need to make sure to reference the TweetMax library in our page:

1 <script type="text/javascript" src="js/vendor/TweetMax.min.js"></script>

With that set, we’re all ready to go. To include the Greensock animations in our app, we’ll need to set up our animations to use JavaScript. In this way, there is little to no integration code necessary beyond simply animating with javascript:

 1 angular.module('myApp', ['ngAnimate'])
 2 .animation('scrollAside', function($window) {
 3 return {
 4 enter: function(element, done) {
 5 TweenMax.set(element, {
 6 position: 'relative'
 7 });
 8 TweenMax.to(element, 1, {
 9 opacity: 0,
10 width: 0
11 });
12 $window.setTimeout(done, 2000);
13 }
14 }
15 });

The digest loop and $apply

The digest loop and $apply

Let’s take a peek and look at how Angular works a bit underneath the hood. How do we get this magical data-binding to work in only a few lines of code?

Probably one of the most important pieces of angular to know is how the $digest loop works and how to use the $apply() method.

In the normal browser flow, a browser will execute callbacks that are registered with an event that occurs, like clicking on a link.

Events are fired when the page is loaded, when an $http request comes back, when the mouse moves or a button is clicked, etc.

When an event is fired/triggered, javascript creates an event object and executes any functions listening for the specific events with this event object. This callback method then runs inside the javascript function, which then returns back to the browser which may or may not update the DOM.

 	
 [image: information]
 	
 No two events can run at the same time; the browser waits until one event handler finishes before the next handler is called.

In vanilla javascript, sans-angular we can attach a function callback to the click event to a div. Anytime that a click event is found on an element, the function callback gets run:

1 var div = document.findElementById("clickDiv");
2 div.addEventListener("click",
3 function(evt) {
4 console.log("evt", evt);
5 });

 	
 [image: tip]
 	
 Open the Chrome dev tools and run that inside of any webpage.

Anytime that the browser detects a click, the browser will call the function registered with the addEventListener on the document.

When we mix Angular into the flow, it extends this normal browser flow to create an angular context. The Angular context refers specifically to code that runs inside the Angular event loop, the $digest loop.

To really understand the angular context, we’ll need to look at exactly what goes on inside of it. There are two major components of the $digest loop:

	The $watch list

 	The $evalAsync list

$watch list

Every time that we track an event in the view, we are registering a callback function that we intend to getting called when an event happens in the page. Recall our first example:

 1 <!DOCTYPE html>
 2 <html ng-app>
 3 <head>
 4 <title>Simple app</title>
 5 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.2/angular.js">\
 6 </script>
 7 </head>
 8 <body>
 9 <input ng-model="name" type="text" placeholder="Your name">
10 <h1>Hello {{ name }}</h1>
11 </body>
12 </html>

Anytime that the input field is updated, {{ name }} changes in the UI. This happens because we bind the input field in the UI to the $scope.name property. In order to update the view, Angular needs to track the change. It does this by adding a watch function to the $watch list.

Properties that are on the $scope object are only bound if they are used in the view. In the case above, we added a single function to the $watch list.

Remember: for all UI elements that are bound to a $scope object, a $watch will be added to the $watch list.

These $watch lists are resolved in the $digest loop through a process called dirty checking.

Dirty checking

Dirty checking is a simple process that boils down to a very basic concept to check if a value has changed that hasn’t been synchronized across the app.

 	
 [image: information]
 	
 The dirty checking strategy is commonly used in a lot of different applications, beyond Angular. Game engines, database engines, and Object Relational Mappers (ORMs) are some examples of such systems.

Our angular app will keep track of the values of the current watches (in the watch object, for the curious). As angular walks down the $watch list, if the updated value has not changed from the old value, then it will continue down the $watch list. If the value has changed, then the app will record the new value and continue down the $watch list.

 [image: Digest loop]Digest loop

After the $watch list has been run through entirely, if any value changed, then the app will fall back into the $watch loop until nothing has changed.

Why run the loop all over again? If we update a value in the $watch list that updates another value angular won’t detect the update unless we rerun the loop.

If the loop runs 10 times or more, our angular app will throw an exception and the app will die. Without this exception getting thrown, our app could get thrown into an infinite loop and bad things will happen.

Note: in future versions of Angular, the framework will use the native browser specification Object.observe() which will give the dirty checking process quite a speed-up.

$watch

The $watch method on the $scope object sets up a dirty check on every call to $digest inside the Angular event loop. The angular $digest loop will always return if it detects changes on the expression.

The $watch function itself takes two required arguments and a third optional one:

	watchExpression

The watchExpression can either be a property of a scope object or a function. This runs on every call to $digest in the $digest loop.

If the watchExpression is a string, then it is evaluated in the context of the $scope. If it is a function, then it is expected to return the value that should be watched.

	listener/callback

The callback listener function will only be called when the current value of the watchExpression and the previous value of the expression are not equal (except when it’s being initialized on the first run).

	objectEquality

The objectEquality parameter is a comparison boolean that tells Angular to check for equality, rather than by reference.

The $watch function returns a deregistration function for the listener that we can call to cancel angular from watching the value.

 1 // ...
 2 var unregisterWatch =
 3 $scope.$watch('newUser.email',
 4 function(newVal, oldVal) {
 5 if (newVal === oldVal) return; // on init
 6 });
 7 // ...
 8 // later, we can unregister this watcher
 9 // by calling
10 unregisterWatch();

If we are done watching the newUser.email in this example, we can clean up our watcher by calling the deregistration function it returns.

For instance, let’s say we want to parse an input field value from a full name to split on spaces and find a simple first and last name. Given that our view looks like:

1 <input type="text" ng-model="full_name" placeholder="Enter your full name" />

 	
 [image: information]
 	
 Note: we should never use $watch in a controller as it makes it difficult to test the controller. We’re illustrating this for simplicity and will later move these watches into services.

We’ll want to set up a $watch listener on the full_name property and detect for any changes to the value. We’ll set the $watch function on the full_name property.

1 angular.module("myApp")
2 .controller("MyController", ['$scope', function($scope) {
3 $scope.$watch('full_name', function(newVal, oldVal, scope) {
4 // the newVal of the full_name will be available here
5 // while the oldVal is the old value of full_name
6 });
7 }]);

In our example, we’re setting an AngularJS expression that tells our angular app to “watch the full_name property for any potential changes on it and run the function if you detect any changes”.

The listener function is called once on initialization, so the first time around, the value of newVal and oldVal will be undefined (and will be equal). This being the case, it’s generally good to check inside the expression if we’re in the initialization phase or if there is an update to the previous value. We can easily accomplish this inside the function, like so:

1 $scope.$watch('full_name',
2 function(newVal, oldVal, scope) {
3 if (newVal === oldVal) {
4 // This will run only on the initialization of the watcher
5 } else {
6 // A change has occurred after initialization
7 }
8 });

The $scope.$watch() function sets up a watchExpression on the $scope for ‘full_name’.

$watchCollection

Angular also allows for us to set shallow watches for object properties or elements of an array and fire the listener callback whenever the properties change.

Using $watchCollection allows us to detect when there are changes on an object or array, which gives us the ability to determine when items are added, removed, or moved in the object/array. $watchCollection works just like normal $watch works in the $digest loop and we can treat it as a normal $watch.

The $watchCollection() function takes two parameters:

	obj (string/function)

The obj to watch. If a string is passed in, then it will be evaluated as an Angular expression. If a function is passed in, it will be called with the current scope and will be expected to return the value to watch.

	listener (function)

The callback function that will be fired when the collection changes. Similar to the $watch function, this function will be called with the new collection fired from the $watch, the old collection (a copy of the previous collection), and the scope it will be executed within.

The $watchCollection() function returns a deregistration function that, when called cancels our $watch on the collection.

1 $scope.$watchCollection('names',
2 function(newNames, oldNames, scope) {
3 // Our names collection has changed
4 });

The $digest loop in a page

Inside of a web page, this process works a bit like this. Assuming we have a (very insecure) login page that features a single name field to log in with a single form validation.

 	
 [image: tip]
 	
 We do not recommend this as an insecure form of authentication.

1 <h2>Sign in</h2>
2 <input
3 type="text"
4 placeholder="Your name"
5 ng-model="name"
6 ng-minlength='3' />
7 <input type="submit"
8 ng-click="login()"
9 value="Login" />

With the name bound in the view through the ng-model directive, angular sets up an implicit watcher to bind the value of the input field to the current $scope.

When the user inputs a character into the form, the angular context kicks in and start iterating through the $$watchers (the $watch list).

In this case, the $watch list consists of a single element: $scope.name. Since the user has changed the input field by a single character, the watch function will execute on the $scope.name binding. This triggers the validations and formatters to run on the value (because of the ng-model binding) before we exit the $digest loop.

Since a value has changed in the digest loop, angular will need to re-run the loop to confirm that it did not change any other values on the scope.

 	
 [image: information]
 	
 Why run the digest loop again? If we have a value called $scope.full_name which consists of $scope.first_name + $scope.last_name, any change to either of these values will change $scope.full_name so the loop needs to run again to ensure that nothing else has changed.

Since changing the $scope.name attribute does not change any other attribute in the $scope, the $digest loop will exit and the browser will call repaint on the DOM.

After the user has entered their name in the input field and click on the submit button. This will cause a slightly different flow to happen.

ng-click binds the browser’s native click event to the DOM element. When that DOM element receives the click event, the ng-click directive calls $scope.$apply() and then we enter the $digest loop.

$evalAsync list

The $evalAsync() method is a way to schedule running expressions on the current scope sometime in the future. The second operation that the $digest loop runs is executing the $$asyncQueue. We can get access to this work queue with the $evalAsync() method.

Through the $digest loop, the queue will empty between each loop through the dirty checking life-cycle. This means two things for any function called with $evalAsync:

	It will execute sometime after the function that called it.

 	At least one $digest cycle will be performed after the expression is executed.

The $evalAsync() method takes a single argument:

	expression (string/function)

The expression to execute on the current scope. If a string is passed, then it will $eval the expression on the scope.

If a function is passed, then it will execute the function with the scope that is passed in as it’s executed.

1 $scope.$evalAsync('attribute',
2 function(scope) {
3 scope.foo = "Executed"
4 });

Some particulars to think about when using $evalAsync:

	If a directive calls $evalAsync() directly, it will run after the DOM has been manipulated by Angular, but before the browser renders

 	If a controller calls $evalAsync(), then it will run before the DOM has been manipulated by Angular and before the browser renders (we’ll never really want this)

A time when we would want to use the $evalAsync() function is any time that we want an action to occur outside of the scope of another action in angular.

We might use this instead of a setTimeout() function where it might cause a flicker after the browser re-renders the view.

$apply

The $apply() function is used to execute an expression inside the angular context from outside of the angular framework. For instance, if we implement a setTimeout() or are using a third-party library and we want the event to run inside the angular context, we must use $apply().

The $apply() function takes one optional argument:

	expression (string/function)

The expression argument optionally takes a string or a function and executes it inside the current scope.

If a string is passed, then $apply() will first call $eval() on the string. This will force angular to $eval() the string on the local scope context.

If a function is passed, then the function will be executed on the scope passed into the function.

Any exception that is thrown by the $eval() method will be caught and handled by the $exceptionHandler service. Lastly, the $apply() method directly calls the $digest loop.

 1 // Ways to call apply
 2 // with a string to be eval'd
 3 $scope.$apply('message = "Hello World"');
 4 // With a function that is passed a scope
 5 $scope.$apply(function(scope) {
 6 // Execute this function with the scope
 7 scope.message = "Hello World";
 8 });
 9 // With a function that ignores the scope
10 $scope.$apply(function() {
11 $scope.message = "Hello World";
12 });
13 // Or just force the $digest loop to run
14 // by calling it at the end of our operation
15 $scope.$apply();

Simply said, using $scope.$apply() is a way to get access to the angular context from outside of it.

If we call $apply() when an event is fired, we’ll run it through the Angular event loop. If we don’t call $apply(), we won’t execute the function in the event loop and it will run outside of the angular context.

When to use $apply()

We can generally count on any directive that is provided by Angular available in the view to call $apply() for us. Any of the ng-[event] directives (like ng-click, ng-keypress, etc) will call $apply().

We can also depend on a lot of built-in angular services to call $digest() for us as well. The $http service calls $apply() after the XHR request is done to trigger updating the return value (promise).

Anytime that we are handling an event manually, using a third-party framework (like jQuery or the Facebook API), or calling setTimeout() we’ll use the $apply() function to tell angular to rerun the $digest loop.

 It’s generally not advised to use $apply() in a controller as it makes it difficult to test and if we have to use $apply() or $digest() in a controller, we’re probably making things more difficult than they should be.

When integrating jQuery with angular (generally considered dirty), we’ll need to use $apply() because it knows nothing about the angular context. For instance, when using a jQuery plugin, like the datepicker we’ll need to use apply to get the value from jQuery into our angular app.

Here, we’ll build a simple directive (which we’ll dive deep into in the directives chapter), and use the datepicker jQuery plugin function on the element.

The datepicker plugin exposes an event onSelect that will get fired when the user picks a date. In order to get access to the date that the user picks inside of our angular app, we’ll need to run this inside the $apply() function.

 	
 [image: information]
 	
 The ele.datepicker() function is a property function made available on the DOM element by the jQuery datepicker plugin. In order to make this work, we’ll need to make sure we include jQuery and the jQuery datepicker plugin on the page.

 	
 [image: information]
 	
 The ctrl.$setViewValue() function is a function that is made available when using ng-model on a DOM element. For more information, read the controllers chapter.

 1 app.directive('myDatepicker', function() {
 2 return function(scope, ele, attrs, ctrl) {
 3 $(function() {
 4 // call datepicker on the element
 5 ele.datepicker({
 6 dateFormat: 'mm/dd/yy',
 7 onSelect: function(date) {
 8 scope.$apply(function() {
 9 ctrl.$setViewValue(date);
10 });
11 }
12 })
13 });
14 }
15 });

Demystifying angular

Demystifying angular

At it’s core, AngularJS webapps load in the browser the same as non-AngularJS apps, however they do run a little differently. The browser loads the AngularJS library as it is building the DOM (as any javascript libraries normally are loaded).

When the browser fires the DOMContentLoaded event, Angular goes to work. It starts by looking for the ng-app directive (more on this in the next chapter).

 	
 [image: tip]
 	
 AngularJS will also start initializing when the angular.js script is loaded if the document.readyState is set to complete. This is useful if we want to dynamically link the angularjs script.

If the ng-app directive is found in the DOM, then the app will be automatically bootstrapped for us. If it’s not found, Angular will expect us to bootstrap the app manually.

To manually bootstrap an AngularJS app, we can use the angular method bootstrap(). It makes sense to manually bootstrap an application in some relatively rare cases, for instance, let’s say you want to run an AngularJS app after some other library code runs or you are dynamically creating an element on the fly.

To manually bootstrap an app, we can bootstrap it, like so:

1 var newElement = document.createElement("div");
2 angular.bootstrap(newElement, ['myApp']);

 	
 [image: tip]
 	
 If there is no ng-app directive found in the DOM and we have not manually bootstrapped our app, AngularJS will not run. This can definitely cause some issues if you forget to use ng-app.

If there is no application specified in the ng-app attribute, then angular will load the app without a specific module. If one is specified, then angular will load the module associated with the directive.

Using ng-app without specifying a module:

1 <html ng-app>
2 </html>

Using ng-app with a specified module:

1 <html ng-app="moduleName">
2 </html>

Angular will use it to configure the $injector service (which we will talk about in the dependency injection chapter in-depth).

Once the application has been loaded, the $injector will create the $compile service along with the app’s $rootScope.

Following the $rootScope’s creation, the $compile service takes over. It links the $rootScope with the existing DOM and will start to compile the DOM beginning from where the ng-app directive is set as the root.

How the view works

When the browser gets it’s HTML in the normal web flow, it will receive the HTML and parse it into a DOM tree. Each element in the DOM tree, called a DOM element will build a bunch of nodes. The browser is then responsible for laying it out, from the parent elements then down to it’s children.

When the browser fetches scripts (from the <script> tag), it will pause the parsing and wait until the script is retrieved (it’s possible to modify this behavior, but this is the default).

When the angular.js script is retrieved, it is executed and it sets up an event listener to listen for the DOMContentLoaded event to get fired.

 	
 [image: information]
 	
 The DOMContentLoaded loaded event is fired when the HTML document has been completed loaded and parsed.

When the event is detected, angular will look for the ng-app directive and creates the several necessary components it needs to run (the $injector, the $compile service, and the $rootScope) and then it will start parsing the DOM tree.

Compilation phase

The $compile service traverses the DOM and collects all of the directives that it finds. It then combines all of their linking functions into a single linking function.

This linking function is then used to link the compiled template to the $rootScope (the scope attached to the ng-app DOM element).

It finds the directives in the DOM by looking through the attributes, comments, the classes, and the DOM element name.

1
2
3 <my-directive></my-directive>
4 <!-- directive: my-directive -->

 	
 [image: information]
 	
 For more in-depth directive coverage, check out the directives chapter.

The $compile service walks the DOM tree looking for DOM elements with directives declared. When it encounters a DOM element with one or more directives, it will order the directives (based upon their priority), use the $injector service to find and collect the directive’s compile function and execute it.

The compile function in directives is the appropriate time to do any DOM transformations or inline templating as it will create a clone of the template.

1 // Returns a linking function
2 var linkFunction = $compile(appElement);
3 // Calls the linking function, attaching
4 // the $rootScope to the domElement
5 linkFunction($rootScope);

After the compile method runs per node, the $compile service will call the linking functions. The linking function set up watches on the directives that are bound to the enclosing scope. This is responsible for creating the live-view.

Finally, after the $compile service is complete, the AngularJS runtime is ready to go.

Runtime

In a normal browser flow, the event loop waits for events (like the mouse moving, clicking, a keypress, etc). As these events occur, they are placed into the browser’s event queue. If any function handlers are set to react to the event, then they are are called with the event as a parameter.

1 ele.addEventListener('click', function(event) {});

With AngularJS, the event loop is augmented a bit as Angular provides it’s own event-loop. Directives themselves register event listeners so that when events are fired, the directive function is run in AngularJS $digest loop.

 	
 [image: tip]
 	
 The angular event loop is called the $digest loop. The $digest loop is composed of two small loops, the evalAsync loop and the $watch list.

When the event is fired, it is called within the context of the directive, which is in the AngularJS context. Functionally, AngularJS calls the directive within an $apply() method on the containing scope. This entire process is kicked off by Angular starting it’s $digest cycle on the $rootScope, which propagates through to all of the child scopes.

When Angular falls into the $digest loop, it waits for the $evalAsync queue to empty before it hands back the callback execution context to the browser. The $evalAsync is used to schedule any work that needs to be run outside of the current stack frame, but before the browser renders.

Additionally, it waits for the for the $watch expression list, an array of potential expressions that may change during the previous iteration. If a change is detected, then the $watch function is called and the $watch list is run over again to ensure that nothing has changed.

 	
 [image: tip]
 	
 Note that for any changes detected in the $watch list, AngularJS will run through the list again to ensure that nothing has changed.

Once the $digest loop settles down and no potential changes are detected, the execution leaves the Angular context and it passes normally back to the browser where the DOM will be rendered.

This entire flow happens between every browser event, which is why Angular can be so powerful. It is also possible to inject events from the browser into the AngularJS flow.

Essential AngularJS extensions

One of the most popular and supported AngularJS plugins is the the angular-ui framework.

AngularUI

AngularJS itself is packed full of features out-of-the-box that we can use to build an expressive AngularJS app without relying on separate libraries. However, the very active AngularJS community has built some great libraries that we can take advantage of to maximize the power of our apps.

In this section, we’re covering several different and most commonly used components of the AngularUI library.

The AngularUI library has been broken out into several modules so that rather than including the entire suite, we can pick and choose the components that we’re interested in using.

As we walk through the different components, we’ll need to ensure that we install each of the different components we are going to work with.

Installation

For each component, we can either download the individual javascript library and place it in our application path <i>or</i> we can use bower to install them. We at ng-newsletter.com recommend using bower. For the purposes of this chapter, we’ll cover installing each module only with bower.

ui-router

One of the most useful libraries that the AngularUI library gives us is the ui-router. It’s a routing framework that allows us to organize our interface by a state machine, rather than a simple url route.

 Note that at time of this writing, the ui-router library may change, although there is a lot of support for the API.

Installation

To install the ui-router library, we can either download the release or use bower to install the library.

Make sure you have bower installed globally:

1 $ npm install bower -g

User bower to install the angular-ui library:

1 $ bower install angular-ui-router --save

We’ll need to make sure we link the library to our view:

1 <script type="text/javascript" src="app/bower_components/angular-ui-router/releas\
2 e/angular-ui-router.js"></script>

And we’ll need to inject the ui.router as a dependency in our app:

Mobile apps

Mobile apps

Mobile apps are not the next frontier for software developers, they’re already here. There are already 1.2 billion mobile web app users and that number is growing rapidly (Wikipedia). Soon, the number of mobile devices will exceed the number of people on the planet. At the rate at which the number of mobile devices is growing, it’s estimated that 5.1 billion people will be using mobile phones by 2017.

For us as app developers, it’s important that we develop for mobile technology if we want to stay relevant. With AngularJS, we have some great support for mobile, written by both the Angular team and the community.

In this section, we’re going to work through these two different ways to give our users a mobile experience for our app:

	Responsive web apps

 	Native with Cordova

Responsive web apps

The easiest way to support mobile with Angular is by using the tools we already know and love to create a mobile-ready angular app: HTML and CSS. Since angular apps are already based on HTML, making our designs and interaction responsive are only a matter of building the architecture to support the different devices.

Interaction

For the desktop, the ability to create interactions are already available to us through the ng-click and family directives.

Starting from Angular version 1.2.2 and on, we now have the ability to use touchevents using the new ngTouch module. Since ngTouch is not built-in to the core Angular library, we’ll need to install the library.

Installation

Installing ngTouch can be done in several ways. The simplest way to install the ngTouch module is by downloading the source from angularjs.org.

Find the extras in the download section and we’ll download and store the ng-touch.js file into an accessible location in our app.

Alternatively, we can use bower to install angular-touch:

1 $ bower install angular-touch --save

Either way, we’ll need to reference the library in our index.html as a script:

1 <script src="/bower_components/angular-touch/angular-touch.js"></script>

And finally, include ngTouch as a dependency in our app:

1 angular.module('myApp', ['ngTouch']);

Now we’re ready to take advantage of the ngTouch library.

ngTouch

Mobile browsers work slightly differently then desktop browsers when dealing with click events. Mobile browsers detect a tap event and then wait about 300 ms or so to detect any other taps, for instance if we’re double-tapping the device. After this delay, then the browser fires a click event.

This delay can make our apps feel incredibly unresponsive. Instead of dealing with the click event, we can detect touch events instead.

The ngTouch library handles this for us, seamlessly through the ng-click directive and will take care of calling the right click event for us. This so-called fast click event will be called.

 After the fast click has been called, the browser’s delayed click will then be called, causing a ‘double’ action. ngTouch takes care of this for us.

Using the ngClick directive on mobile devices works the exact same way on mobile browsers as it does on desktop browsers:

1 <button ng-click="save()">Save</button>

ngTouch also introduces two new directives: swipe directives. These swipe directives allow us to capture user swipes, either left or right across the screen. These are useful for situations where we want the user to be able to swipe a photo gallery photo or to a new portion of our app.

The ngSwipeLeft directive detects when an element is swiped from the right to the left, while the ngSwipeRight directive detects when an element is swiped from the left to the right.

 One of the nice features the ngSwipe* directives give us is that they work both with touch-based devices as well as mouse clicking and dragging.

Using the ngSwipe* directives is easy. For instance, let’s say we have a list of emails and we want to reveal actions for each email, like the popular mobile email client MailboxApp.

We can easily implement it using these swipe directives on our list of elements. When we are showing our list of emails, we’ll enable swiping in one direction to show the actions we can take on that particular mail item.

When we are showing actions for the mail item, we’ll enabled swiping in the other direction to hide the actions we can take.

 1
 2 <li ng-repeat="mail in emails">
 3 <div
 4 ng-show="!mail.showActions"
 5 ng-swipe-left="mail.showActions=true">
 6 <div class="from">
 7 From: {{ mail.from }}
 8 </div>
 9 <div class="body">
10 {{ mail.body }}
11 </div>
12 </div>
13 <div
14 ng-show="mail.showActions"
15 ng-swipe-right="mail.showActions=false">
16 <ul class="actions">
17 <button>Archive</button>
18 <button>Trash</button>
19
20 </div>
21
22

 [image: Swipe directives example]Swipe directives example

$swipe service

For more custom touch-based animations, we can use the $swipe service directly. The $swipe service is a service that abstracts the details of hold-and-drag swiping behavior.

The $swipe service has a single method called bind(). This bind() method takes an element that it will bind the swipe actions on as well as an object with four event handlers.

These event handlers get called with an object that contains the coordinates object, like so: { x: 200, y: 300 }.

The four events handlers are handlers to handle the following events:

	start

The start event is fired on either a mousedown or a touchstart event. After this event, the $swipe service sets up watches for touchmove and mousemove events. These events are only fired until the total distance moved exceeds a small distance to prevent accidental swipes.

Once this distance has been passed, then one of two events happen:

	If the vertical delta is greater than the horizontal, then the browser takes over as a scroll event.

 	If the horizontal delta is greater than the vertical delta, then this is viewed as a swipe and our move and end events are set to follow the swipe.

 	move

The move event is called on mousemove and touchmove events only after the $swipe service has determined that a swipe is in fact in progress.

	end

The end event is fired when we’ve finished with a touchend or a mouseup event after the move event has been fired.

	cancel

The cancel event is called on either a touchcancel or we begin scrolling after the start event instead.

For instance, we can create a directive that enables swiping between slides that might control a projector screen. To handle swiping on the mobile control, we’ll use the $swipe service to handle our custom logic for how to display the UI layer.

 1 angular.module('myApp')
 2 .directive('mySlideController', ['$swipe',
 3 function($swipe) {
 4
 5 return {
 6 restrict: 'EA',
 7 link: function(scope, ele, attrs, ctrl) {
 8 var startX, pointX;
 9
10 $swipe.bind(ele, {
11 'start': function(coords) {
12 startX = coords.x;
13 pointX = coords.y;
14 },
15 'move': function(coords) {
16 var delta = coords.x - pointX;
17 // ...
18 },
19 'end': function(coords) {
20 // ...
21 },
22 'cancel': function(coords) {
23 // ...
24 }
25 });
26 }
27 }
28 }]);

angular-gestures and multi-touch gestures

Angular gestures is an angular module that gives us the ability to handle multi-touch in our angular apps. It is based on the very popular and well-tested Hammer.js library.

The Hammer.js library gives us a bunch of events common to touchscreen events:

	Tap

 	DoubleTap

 	Swipe

 	Drag

 	Pinch

 	Rotate

The angular-gestures library enables us to use these events using angular directives. For instance, all of these directives are available to us:

	hmDoubleTap : ‘doubletap’,

 	hmDragStart : ‘dragstart’,

 	hmDrag : ‘drag’,

 	hmDragUp : ‘dragup’,

 	hmDragDown : ‘dragdown’,

 	hmDragLeft : ‘dragleft’,

 	hmDragRight : ‘dragright’,

 	hmDragEnd : ‘dragend’,

 	hmHold : ‘hold’,

 	hmPinch : ‘pinch’,

 	hmPinchIn : ‘pinchin’,

 	hmPinchOut : ‘pinchout’,

 	hmRelease : ‘release’,

 	hmRotate : ‘rotate’,

 	hmSwipe : ‘swipe’,

 	hmSwipeUp : ‘swipeup’,

 	hmSwipeDown : ‘swipedown’,

 	hmSwipeLeft : ‘swipeleft’,

 	hmSwipeRight : ‘swiperight’,

 	hmTap : ‘tap’,

 	hmTouch : ‘touch’,

 	hmTransformStart : ‘transformstart’,

 	hmTransform : ‘transform’,

 	hmTransformEnd : ‘transformend’

angular-gestures installation

To install the angular-gestures library in our app, we’ll need to include the gestures.js (or gestures.min.js) library in our page.

We can either download the gestures.js files directly from the github page at https://github.com/wzr1337/angular-gestures or we can use bower to install it.

To install angular-gestures using bower, install it with the following command:

1 $ bower install --save angular-gestures

Lastly, we’ll need to set angular-gestures as a dependency for our angular app:

1 angular.module('myApp', ['angular-gestures']);

Using angular-gestures

From here, angular gestures are really easy to use. Gestures are just angular directives, so we’ll use them the same way we use any other directives in our app.

Let’s say that we want to allow users to rotate, pinch, and zoom photos in a photo gallery. We can use

FINISH:::::

Native applications with Cordova

Cordova is a free, open-source framework that allows us to create mobile apps using standard web APIs, instead of native code. It enables us to write mobile applications using HTML, JavaScript, CSS, and AngularJS instead of needing to write Objective-C or Java (for iOS or Android, respectively).

 [image: Cordova]Cordova

Cordova exposes native device access through JavaScript APIs that allow us to run device-specific operations, such as getting the native location or using the camera. It is built to support the plugin architecture so we can take advantage of Cordova community-built plugins, such as native audio access or barcode scanning plugins.

One of the benefits of using Cordova is that we can reuse our Angular app code to support the mobile environment. Of course, there are a few issues that we’ll deal with, such as performance and native component access.

Installation

Cordova itself is distributed as an npm package, so we’ll use npm to install it.

 If you do not have npm installed, make sure you have node installed. For information on installing NodeJS, read the Next Steps chapter.

1 $ npm install -g cordova

 [image: Installing Cordova]Installing Cordova

The Cordova package includes a generator that will create our app and make it Cordova-ready.

Getting started with Cordova

Getting started with Cordova is simple. We’ll use the generator to create the starting point of our Cordova app. We’ll call the app GapApp.

The generator takes up to three parameters:

	project-directory (required)

The directory where we’ll create the app

	package-id

The ID of the project (the package name in reverse-domain style)

	name

The package name (name of the application)

1 $ cordova create gapapp io.fullstack.gapapp "GapApp"

This line will set up a directory called gapapp (identified by the first parameter) with a package ID io.fullstack.gapapp and the project name GappApp.

 [image: Cordova file structure]Cordova file structure

The Cordova team has broken Cordova into plugins so that we don’t need to include platforms we won’t be building for (and thus making it easier to develop support for other platforms). That means that we’ll need to add to our project any platforms for which we’re interested in developing.

For this project, we’ll assume the rest of these commands are run from inside the project directory:

1 $ cd gapapp/

We’ll be building for iOS (although the process is the same for other platforms). To add iOS as a platform, simply add it to the project using the following Cordova command:

1 $ cordova platform add ios

 For this command to work, we’ll need to ensure we have the iOS SDK installed using XCode. Download the iOS SDK and XCode at developer.apple.com.

Once you have that set, build the basic app:

1 $ cordova build ios

Now, due to some intricacies with Apple’s developer tools, we will have to build the app ourselves to get it to run on our local iOS simulator.

Let’s navigate to our app directory, where we’ll find the platforms directory. Inside of it, we’ll find the io/ directory that was created for us by the platform add command above.

 [image: Generated project]Generated project

In XCode, open the project that we created with said command. Make sure the simulator is shown in the platform identifier at the top of XCode.

 [image: Build in XCode]Build in XCode

Click run.

Once you have done so, we should see the basic Cordova app start to run in our simulator.

 [image: Barebones Cordova app]Barebones Cordova app

Development workflow with Cordova

Cordova powers the PhoneGap project, which has been accepted into the Apache Foundation. The project itself includes a command-line tool that we’ll use to interact with our native app, from creation to deployment.

Platforms

At this point, we’ve created our app and added a platform (in this case, iOS).

 Available platforms for the Cordova app vary depending on which development environment we’re using. On a Mac, the available platforms are:

	iOS

 	Android

 	Blackberry10

 	Firefox OS

For a Windows machine, we can develop for the following platforms:

	Android

 	Windows Phone 7

 	Windows Phone 8

 	Windows8

 	Blackberry10

 	Firefox OS

If we forget which platforms are available, we can run the platforms command to check which are available and installed:

1 $ cordova platforms ls

To add a platform, we can use the platform add command (as we’ve done above):

1 $ cordova platform add android

To remove one, we can use the rm or remove command:

1 $ cordova platform rm blackberry10

Plugins

Cordova is built to be incredibly modular, with the expectation that we will install all of the non-core components with the plugin system. To add a plugin to our project, we’ll use the plugin add command:

1 $ cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-geolo\
2 cation.git

We can list the current plugins that we have installed using the plugins ls command:

1 $ cordova plugins ls
2 ['org.apache.cordova.geolocation']

Finally, we can remove a plugin using the plugin rm command:

1 $ cordova plugins rm org.apache.cordova.geolocation

Building

By default, Cordova creates a skeleton project that houses the web files in www/ directory in the project directory. When Cordova builds the project, it copies these files and places them in their platform-specific directories.

To build the app, we’ll use another Cordova command, the build command:

1 $ cordova build

Without specifying any platform to build for, this command will build for all of the platforms we’ve listed in our project.

We can limit the scope by building only for specific platforms, such as:

1 $ cordova build ios
2 $ cordova build android

 The build command will ensure that the necessary platform-specific code is set so our app can be compiled. In effect, we’re doing the same thing as calling cordova prepare && cordova compile.

Emulating and running

Cordova also makes it possible to run an emulator in order to simulate running the app on a device. Doing so is, of course, only possible if an emulator is installed and set up on our local development environment.

Assuming our emulator is set up in our development environment, we can tell Cordova to launch and install our app in our emulator:

1 $ cordova emulate ios

 For iOS, we may have to build the project (as we did above) using XCode if the emulator environment is not set up on our machine.

It’s also possible to run the application on a particular device by using the run command instead. The run command will launch the application on a device or on the emulator if no device is found and available.

1 $ cordova run ios

In development

It can be cumbersome to make a change to one part of our app and need to recompile the app to see the changes reflected in our app. To help speed the process of developing the web app side of the app, we can use the serve command to serve a local version of our www/ folder to a web browser.

1 $ cordova serve ios
2 Static file server running at
3 => http://0.0.0.0:8000/
4 CTRL + C to shutdown

Now, we can use our web browser and navigate to the URL: http://localhost:8000/ios/www/index.html. Our app’s www/ folder is being served through HTTP, so we can build it and watch it change as we make changes to the app.

When we make changes, we’ll need to make sure we rebuild the app:

1 $ cordova build ios

 [image: Building using Safari]Building using Safari

Angular Cordova Service

When our Cordova app is ready, the device has connected, and everything is ready to go, Cordova will fire the browser event called deviceready.

With Angular, we can either bootstrap the app after this event has been fired or we can use promises to handle our logic after the deviceready event has been fired.

To bootstrap the app after we’ve received the deviceready event, we’ll need to set an event listener for the event and then manually call bootstrap on our app:

1 angular.module('myApp', []);
2
3 var onDeviceReady = function() {
4 angular.bootstrap(document, ['myApp']);
5 }
6 document.addEventListener('deviceready',
7 onDeviceReady);

We prefer to use an alternative method of listening for the deviceready event that uses promises to set up execution bindings for after the deviceready event has been fired.

We’ll set up an Angular module that will listen for the deviceready event. We’ll use a service that will listen for the deviceready event and resolve our promises depending on whether the event has been fired.

 1 angular.module('fsCordova', [])
 2 .service('CordovaService', ['$document', '$q',
 3 function($document, $q) {
 4
 5 var d = $q.defer(),
 6 resolved = false;
 7
 8 var self = this;
 9 this.ready = d.promise;
10
11 document.addEventListener('deviceready', function() {
12 resolved = true;
13 d.resolve(window.cordova);
14 });
15
16 // Check to make sure we didn't miss the
17 // event (just in case)
18 setTimeout(function() {
19 if (!resolved) {
20 if (window.cordova) d.resolve(window.cordova);
21 }
22 }, 3000);
23 }]);

Now, we’ll set the fsCordova as a dependency for our module:

1 angular.module('myApp', ['fsCordova'])
2 // ...

We can use the CordovaService to determine if Cordova is, in fact, ready, and we can set our logic to depend upon the service being ready:

1 angular.module('myApp', ['fsCordova'])
2 .controller('MyController',
3 function($scope, CordovaService) {
4 CordovaService.ready.then(function() {
5 // Cordova is ready
6 });
7 });

Including Angular

With the bare Cordova app, we only have a bare JavaScript app that hides and displays the JavaScript view in js/index.js.

We can introduce Angular into the workflow very simply. As we are building a native app, including Angular from a CDN is not ideal; instead, we’ll include the necessary components directly into the app.

We can use Bower for more complex setups, but for the time being, we’ll keep it simple.

To get our Angular app building, we’ll need to download Angular from angularjs.org and store it in a directory accessible by our index.html. We recommend www/js/vendor/angular.js.

Once that’s set, we can start building our Angular app. We’ll need to include the JavaScript file in our www/index.html.

1 <script type="text/javascript" src="js/vendor/angular.js"></script>

Now, we can replace all of the contents of the js/index.js file with our Angular app and develop our app like normal.

Development workflow

When building our app, we’ll use the following workflow:

	Start our local server (Cordova serve [platform])

 	Edit our app

 	Rebuild our app (Cordova build [platform])

This flow, although somewhat cumbersome, is how we’ll edit our app.

If our app doesn’t rely on the Cordova platform, we can edit outside of the simulator and in our web browser (e.g., Chrome). In this case, we can work specifically with building our app, instead of needing to rebuild and redeploy the app.

Building with Yeoman

We can use Yeoman to build a production-ready version of our app. Yeoman is a collection of build scripts that is the officially supported build process for Angular apps. For more information on Yeoman, check out the Yeoman section in the Next Steps chapter.

To install Yeoman, the Angular generator, and the Cordova generator:

1 $ npm install -g yo
2 $ npm install -g generator-angular
3 $ npm install -g cordova

In order to get Yeoman working with Cordova, we’ll need to make a few adjustments to the flow we describe above.

We’ll first create a cordova app like normal.

1 $ cordova create gapapp io.fullstack.gapapp "GapApp"

This will create the folder gapapp/ in our local directory like normal.

 [image: Generating our app]Generating our app

Next, let’s change into the directory and add our platform:

1 $ cd gapapp/
2 $ cordova platform add ios

This will create a platform folder that we’ll work with in a minute to get the actual gapapp working locally in both our emulator and our device.

The first thing that we need to do is set up our yeoman app. in our directory and make a few minor changes to the default configuration:

1 $ yo angular

We’ll go through the normal yeoman questions and let the process complete and build us our directory like normal.

When this process is done, we will have our yeoman app in the app/ directory. This where we’ll do all of our work when it comes to building our mobile app.

In our toolchain, we’ll use the following workflow to build our app:

	Write code

 	Test our code (angular testing)

 	Run our code in the emulator (optional)

 	Test our code on a running device (optional)

The first two tasks are already taken care of using the fantastic yeoman build tool. The second two are the tasks that we’ll build now.

Cordova works by including the www/ directory into the compiled apps, so any modifications we make to the files in the www/ directory will be wrapped into the compiled application after we build it.

Modifying yeoman to work with cordova

Yeoman assumes a different structure by default where it will build our application into a folder called dist/. We’ll modify this build directory to build into the www/ directory.

First, we must save the www/config.xml file that comes built by the cordova create command. Copy or move this file from the www/ into the app/ directory:

1 $ cp www/config.xml app/

Now we’ll want this config.xml to be copied back over to our www/ directory when yeoman builds it.

To change the default directory in which yeoman builds our app, we’ll find the yeoman section in our Gruntfile.js and change the dist: key from dist to be www:

1 // ...
2 grunt.initConfig({
3 yeoman: {
4 app: require('./bower.json').appPath || 'app',
5 dist: 'www' // <~ Change this to www
6 },
7 watch: {
8 // ...

Next, we’ll need to tell yeoman to copy over the config.xml file along with the rest of the files that get copied over by yeoman. Luckily this process is incredibly easy as we’ll only need to add a single string to the list of paths in the copy task.

Inside the copy:dist configuration, add the extension xml to the glob string that lists the files to copy over:

 1 // ...
 2 },
 3 copy: {
 4 dist: {
 5 files: [{
 6 expand: true,
 7 dot: true,
 8 cwd: '<%= yeoman.app %>',
 9 dest: '<%= yeoman.dist %>',
10 src: [
11 '*.{ico,png,txt,xml}', // <~ Add xml
12 '.htaccess',
13 // ...

With these two commands in place, we can now build our app with yeoman and our application inside the app/ directory will be built into the www/ directory.

1 $ grunt build

This sets up our basic app to work with yeoman, but not with any of the dev tools to actually build our mobile app.

Fixing the yeoman build

Note that when we’re developing our applications, we cannot fetch remote resources from a CDN, for instance. The default yeoman build sets up our scripts to load from the google CDN.

We must modify the index.html template slightly so that we don’t load jquery and angular from the CDN by surrounding the script tags inside a build script, like so:

1 <!--
2 Add the following line and the endbuild line
3 after the script tags
4 -->
5 <!-- build:js scripts/library.js -->
6 <script src="bower_components/jquery/jquery.js"></script>
7 <script src="bower_components/angular/angular.js"></script>
8 <!-- endbuild -->

Building the mobile part

To build our mobile app with our yeoman tools, we can add a few more task definitions to grunt to make the processes of building, testing, and deploying to our devices a breeze.

Cordova has two different binaries to build our app, a local builder inside the platforms/ directory to actually compile the native application and a global binary to build the our application from the root directory created by the cordova create command.

To build our application normally, we can simply run the cordova build command from the root directory and cordova will handle copying the www/ directory into the appropriate location for the different platforms.

1 $ cordova build

We can create a task to do the same for us so we can simply use grunt like normal. To support this, we’ll need to install a grunt library called grunt-shell. We can use npm to handle installing this library for us:

1 $ npm install --save-dev grunt-shell

Next we’ll need to define our configuration for the shell commands. We’re going to create two commands, one to emulate our app on our computer’s mobile device simulator and one to our actual device.

 1 uglify: {
 2 // ...
 3 },
 4 shell: {
 5 build: {
 6 command: 'cordova build'
 7 },
 8 emulate: {
 9 command: 'cordova build'
10 }
11 }
12 // ...

These commands are very similar right now as in both commands we’ll want to tell cordova to actually build the application first.

Next, we’ll need to use the local cordova command to emulate or run our application. The local cordova command can be found in our location platforms path for each different type of platform.

For instance, we’ll have a local emulate command in the ios directory as we’ve added the ios platform in platforms/ios/cordova/emulate. If we add an android platform, we’ll find the cordova command inside the android platform directory at platforms/android/cordova/emulate.

We’ll build a helper function to help us find these local cordova commands. At the top of the Gruntfile, add the following command:

 1 module.exports = function (grunt) {
 2 var path = require('path'),
 3 cordova = require('cordova');
 4
 5 var cordova_cmd = function(cmd) {
 6 var target = grunt.option('target') || "ios";
 7 return path.join(
 8 __dirname, "platforms",
 9 target, "cordova", cmd);
10 }

With this, we can use the cordova_cmd() function to find these local cordova commands. With these local commands we can modify our shell tasks from above to include these custom tasks:

 1 shell: {
 2 build: {
 3 command: 'cordova build && ' +
 4 cordova_cmd('emulate')
 5 },
 6 run: {
 7 command: 'cordova build &&' +
 8 cordova_cmd("run")
 9 }
10 }

We can use these commands simply by running them directly in the shell to test them out:

1 $ grunt shell:build

 	
 [image: information]
 	
 Depending upon the platform we’re developing with, we may need to install dependencies. For instance, with ios, we’ll need to make sure we have ios-sim installed. Check the official cordova docs for information on dependencies for your platform.

Now these commands are semi-useless without being wrapped into another command that actually builds the app from our app/ directory into the www/ directory.

Grunt makes this an easy process where we can simply register a new task that composes of multiple grunt tasks. In this case, we’ll simply wrap our build and run commands into a new task that calls build first:

 1 // task configuration above here
 2 }
 3 });
 4 // ...
 5 grunt.registerTask('devemulate', [
 6 'build',
 7 'shell:build',
 8]);
 9
10 grunt.registerTask('devrun', [
11 'build',
12 'shell:run'
13]);
14
15 grunt.registerTask('server', function (target) {
16 // ...

Now we have the command devemulate available for us to run our app in the simulator environment and on our device.

1 $ grunt devemulate

 	
 [image: information]
 	
 Note, if the command is not working as expected, using the --verbose flag with grunt will often reveal issues, such as missing dependencies.

 [image: Our app in the simulator]Our app in the simulator

We can also run the application on a mobile device that is set up to accept development applications by using the devrun task:

1 $ grunt devrun

Handling the navigator

Lastly, the cordova platform uses the deviceready event fired on the DOM to indicate that the device itself is ready for action.

Now we run into a timing issue to tell us if the cordova app is ready to go or if our angular app has loaded. We can get around this issue by creating a service that captures the deviceready event and resolves to a variable on the outset that we can work with.

The service is very simple:

 1 angular.module('gapappApp.services')
 2 .factory('Cordova', function($q) {
 3 var d = $q.defer();
 4
 5 if (window.navigator) {
 6 d.resolve(window.navigator);
 7 } else {
 8 document
 9 .addEventListener('deviceready', function(evt) {
10 d.resolve(navigator);
11 });
12 }
13
14 return {
15 navigator: function() {
16 return d.promise;
17 }
18 }
19 })

Now, when we want to use cordova’s navigator, we’ll just use the following syntax that will resolve once the device is ready:

1 angular.module('gapappApp')
2 .controller('MainCtrl',
3 function($scope, Cordova) {
4 Cordova.navigator().then(function(navigator) {
5 navigator.notification.vibrate();
6 });
7 });

Localization

Localization

As worldwide access to the web increases, we as developers are constantly pressed to make our apps internationally and locally accessible. When a user visits our apps, he or she should be able to switch languages on the fly at runtime.

Given that we are building AngularJS client-side apps, we don’t particularly want the user to have to refresh the page or visit an entirely different URL. Of course, AngularJS could easily accommodate your international audience natively, perhaps by generating different templates for different languages and serving those within the app.

This process can become cumbersome, and what happens when you want to change the layout of the app? Every single template needs to be rebuilt and redeployed. This process should just be easy.

angular-translate

Instead of creating new templates, we’ll use angular-translate, an AngularJS module that brings i18n (internationalization) to your Angular app. angularjs-translate requires us to create a JSON file that represents translation data per language. It lazy-loads the language-specific translation data from the server only when necessary.

The library angular-translate comes with built-in directives and filters that make the process of internationalizing apps simple. Let’s get started.

Installation

To use angular-translate, we need to load the angular-translate library. We can install it in several different ways, but we prefer using Bower.

Bower is a front-end package manager. It handles not only JavaScript libraries, but also HTML, CSS, and image packages. A package is simply encapsulated, third-party code that is typically publicly accessible in a repository.

	Using Bower

We install angular-translate using the normal Bower process:

1 $ bower install angular-translate

 Alternatively, we can download the minified version of angular-translate from github.

Once we’ve installed the latest stable version of angular-translate, we can simply embed it in our HTML document. Just make sure it’s embedded after Angular itself, as it depends on the core angular library.

1 <script src="path/to/angular.js"></script>
2 <script src="path/to/angular-translate.js"></script>

Last but not least, our app has to declare angular-translate as a load dependency:

Caching

Caching

In large, internet-scale web apps, the ability to limit the API calls from the client-side enables us to create scalable web apps.

Not only does it make the front-end appear quicker and more responsive, but it also protects our backend by reducing the amount of work that our backend needs to perform so it can serve more client consumers on the front-end.

What is a cache

Cache is a component that transparently stores data so that future requests can be served faster. Data that is safe to cache is data that doesn’t need to be recomputed often, where fetching new data would result in duplicated data.

The more requests we can serve from cache, the overall performance of the system increases.

Traditionally, caching servers such as Memcache can be served on the same system that’s serving the content to clients or on remote systems, depending upon the size and traffic of the server.

Depending upon the volatility of the content, we can focus our efforts on storing cached content in long-term storage such as storing it on-disk or short term and only keeping it in memory.

Caching works like a big key-value store. There’s a key that points to a cached piece of content. When the content is requested, if the key is found in the cache and is available (called a cache hit) then the related content will be served.

If the key is not (called a cache miss), then the caching server will need to know how to fetch the data, store it, and then return it back to the original requester of the data.

In this section, we’ll discuss caching strategies within Angular, from how to set up memcache (lightly) for server-side content to using angular’s built-in caching mechanisms through using some good libraries to handle it for us.

Angular caching

Angular offers caching as a feature out-of-the-box both for built-in services and gives us the ability to use the same mechanisms to cache our own custom content.

Introducing the $cacheFactory

The $cacheFactory is the service that generates cache objects for all angular services. Internally, the $cacheFactory creates a default cache object, even if we don’t create one explicitly.

To create a cache object, we’ll use the $cacheFactory and create a cache by id:

1 var cache = $cacheFactory.
2 create('myCache');

This defines a cache of the id of myCache. The $cacheFactory function can take up to two arguments:

cacheId (string)

The cacheId is the name of id of the cache that we’re creating. It can be referenced by the get() method by the name of the cache.

options (object)

The options specify how the cache will behave. Currently, the options object can take a key:

	capacity (number)

The capacity describes the maximum number of cache key-value pairs the cache will store and keep at any given time.

The $cacheFactory() method returns a cache object.

Cache object

The cache object itself has the following methods that we can use to interact with the cache.

info()

The info() method returns the id, the size, and options of the cache object.

put()

The put() method allows us to put a key (string) of any javascript object value into the cache.

1 cache.put("hello", "world");

The put() method returns the value of the cache that we put in.

get()

The get() method gives us access to the cache value for a key. If the key is found, it returns the value, whereas if it is not found, undefined is returned.

1 cache.get("hello");

remove()

The remove() function removes a key-value pair from the cache, if it’s found. If it’s not found, then it just returns.

1 cache.remove("hello");

removeAll()

The removeAll() function resets the cache and removes all cached values.

destroy()

The destroy() method removes all references of this cache from the $cacheFactory cache registry.

Caching through $http

Angular’s $http service creates a cache by the id of $http (surprise, right?). Enabling the $http request to use this default cache object is simple as the $http method(s) allow us to pass a cache parameter.

Default $http cache

Particularly useful when our data doesn’t change very often, we can set this like so:

1 $http({
2 method: 'GET',
3 url: '/api/users.json',
4 cache: true
5 });
6 // Or, using the .get helper
7 $http.get('/api/users.json', {
8 cache: true
9 });

Now, every request that is made through $http to the url /api/users.json will be stored in the default $http cache. The key for this request in the $http cache is the full-path url.

By passing the true parameter in the $http options, we’re telling the $http service to use the default cache. It’s useful to use the default cache if we don’t want to mess with the cache all that often.

We can, however manipulate the default $http cache if we need to, say that another request we make without caching notifies us of a delta change, we can clear the request in the default $http request.

To reference the $http default request, we’ll simply fetch the cache through the $cacheFactory by id:

1 var cache = $cacheFactory.get('$http');

With the cache in-hand, we can do all the normal operations we need/want to do on it, such as retrieve the cached responses, clearing it from the cache or blowing away all cached references:

1 // Fetch the cache for the previous request
2 var usersCache =
3 cache.get('http://example.com/api/users.json');
4 // Delete the cache entry for the
5 // previous request
6 cache.remove('http://example.com/api/users.json');
7 // Start over and remove the entire cache
8 cache.removeAll();

Although we can reference the default cache, sometimes it’s more useful to have more control over the cache to create rules around how the cache behaves. We’ll need to create a new cache to use with our requests.

Custom cache

Telling our $http requests to make requests through our own custom cache is simple. Instead of passing a boolean true with the request, we can pass the instance of the cache.

 1 var myCache = $cacheFactory.get('myCache');
 2 $http({
 3 method: 'GET',
 4 url: '/api/users.json',
 5 cache: myCache
 6 });
 7 // Or, using the .get helper
 8 $http.get('/api/users.json', {
 9 cache: myCache
10 });

Now, instead of using the default cache, $http will use our custom cache.

Setting default cache for $http

Although it is easy, it’s not convenient to need to pass an instance of the cache every time we want to make an $http request, especially if we’re using the same cache for every request.

We can set the cache object that $http uses by default through the $httpProvider in a .config() method on our module.

1 angular.module('myApp')
2 .config(['$httpProvider',
3 function($httpProvider) {
4 $httpProvider.defaults.cache =
5 $cacheFactory('myCache', {capacity: 20});
6 }]);

The $http service will no longer use the default cache it creates for us, but it will use our own cache which is effectively now a Least Recently Used (LRU) cache.

 A LRU cache will keep only the latest number of caches based upon the capacity of the cache. That is, in our cache that has a capacity of 20, the first 20 requests will be cached, but when the 21st comes in, the last recently requested item will be deleted from the cache. The cache itself takes care of maintaining the details about what to maintain and what to remove.

Security

Security

With any client-side app, it’s always a good idea to think about security at build-time. Additionally, it’s relatively tough to deliver 100% protection in any situation and even more difficult to do it when the client can see the entire code.

In this chapter, we’re going to take a look at some techniques for keeping our application secure. We’ll look at how to master the $sce service to secure our text input through wrapping authorized requests with tokens (when talking to a protected backend).

Strict Contextual Escaping, the $sce service

The strict contextual escaping mode (available in Angular version 1.2 and higher include this by default) that tells our app that it requires bindings in certain contexts to result in a value that is marked as safe for use inside the context.

For instance, when we want to bind raw HTML to an element using ng-bind-html, we’ll want angular to render the element with HTML, rather than escaped text.

1 <textarea ng-model="htmlBody"></textarea>
2 <div ng-bind-html="{{htmlBody}}"></div>

$sce is a fantastic service that allows us to write whitelisted, secure code by default and goes a long way in helping us prevent XSS and other vulnerabilities. With this power, it’s important to understand what it is that we’re doing so we can use it wisely.

In the above example, the <textarea> is bound to the htmlBody model. In this textarea, the user can input whatever arbitrary code they would like to get rendered into the div. For instance, this might be a live preview for writing a blog post or comments, etc.

If the user can input any arbitrary text into the text field, we have essentially opened ourselves up to a giant security hole.

In order to protect ourselves against malicious users, it’s a good idea to run our unsafe text through a sanitizer.

The $sce service does this for us, by default on all interpolated expressions. No constant literals are ever untrusted. For instance, this is always a trusted value as the value is a string.

1 <div ng-html-bind-unsafe="'<h1>Trusted</h1>'"></div>

Basically, at the root of embedded directives starting in version 1.2 and on, the values are not bound directly to the value of the binding, but to the result of the $sce.getTrusted() method.

Directives use the new $sce.parseAs() method instead of the $parse service to watch attribute bindings. The $sce.parseAs() method calls $sce.getTrusted() on all non-constant literals.

In effect, the ng-bind-html directive calls $sce.parseAsHtml() behind the scenes and binds the value to the DOM element. The ng-include directive runs this same behavior as well as any templateUrl defined on a directive.

When enabled, the built-in directives will call out to $sce automatically. It is possible that we can use this same behavior in our own directives and other custom components.

To set up $sce protection, we’ll need to inject the $sce service.

 1 angular.module('myApp', [])
 2 .directive('myDirective', ['$sce',
 3 function($sce) {
 4 // We have access to the $sce service
 5 }])
 6 .controller('MyCtrl', [
 7 '$scope', '$sce',
 8 function($scope, $sce) {
 9 // We have access to the $sce service
10 }]);

Inside of our directive and our controller, we’ll want to give angular the ability to both allow trusted content back into the view as well as taking trusted interpolated input.

The $sce service has a simple API that gives us the ability to both set and get trusted content of explicitly specific types.

For instance, let’s build an email previewer. This email client will allow users to write HTML in their email and we want to give them a live preview of their text.

The HTML we can use might look something like:

1 <div ng-app="myApp">
2 <div ng-controller="MyController">
3 <textarea ng-model="email.rawHtml"></textarea>
4 <pre ng-bind-html="email.htmlBody"></pre>

Now, notice that we are taking a body of text in a <textarea></textarea> on a different property of email; email.rawHtml vs. email.htmlBody. Inside our controller, we’ll parse this email.rawHtml as HTML and output it to the browser.

Inside our controller, we can set up a $watch to monitor changes on the email.rawHtml and anytime it changes, run a trusted parser on the HTML content.

 1 .controller('MyCtrl', [
 2 '$scope', '$sce',
 3 function($scope, $sce) {
 4 // set up a watch on the email.rawHtml
 5 $scope.$watch('email.rawHtml', function(v) {
 6 // so long as we are not in the
 7 // $compile phase
 8 if (v) {
 9 // Render the htmlBody as trusted HTML
10 $scope.email.htmlBody =
11 $sce.trustAsHtml($scope.email.rawHtml);
12 }
13 })
14 }]);

Now, anytime the contents of email.rawHtml changes, we’ll run a parser on the content and get back suitable HTML contents. Note, that the content will be rendered as sanitized HTML that’s safe to source in the application.

Now, what if we want to support the user to write custom javascript to execute on the page? For instance, if we want to enable the user to write an ecard that includes custom javascript, we’ll want to enable the ability for them to run their javascript as well.

The HTML invocation for this might look like:

1 <textarea ng-model="email.rawJs"></textarea>
2 <pre ng-bind="email.jsBody"></pre>
3 <button ng-click="runJs()">Run</button>

With this snippet, we’re running the same mechanism for parsing our raw text into safe text. This time, we also add a third element, a button that calls runJs() on our scope.

As we saw with our HTML bindings, we’ll watch the javascript snippet

 1 .controller('MyCtrl', [
 2 '$scope', '$sce',
 3 function($scope, $sce) {
 4 // set up a watch on email.rawJs
 5 $scope.$watch('email.rawJs', function(v) {
 6 if (v) {
 7 $scope.email.jsBody =
 8 $sce.trustAsJs($scope.email.rawJs);
 9 }
10 });
11 }]);

Notice, this time we did not use trustAsHtml(), but we used the trustAsJs() method. This tells Angular to parse the text as executable javascript code. At the end of this call, we’ll have a safe, parsed javascript snippet we can eval() in the context of the application.

We can now enable the runJs() method to be filled out and run the javascript snippet supplied by email.rawJs.

1 // ...
2 $scope.runJs = function() {
3 eval($scope.email.jsBody.toString());
4 }

 Note, there are more intelligent methods of running eval on javascript snippets. For production use, we recommend against using eval.

We get built-in protection by Angular as it will only load templates from the same domain and protocol as the app is loaded within. This is enforced by Angular calling the $sce.getTrustedResourceUrl on the templateUrl.

This does not replace the browser’s Same Origin policies and Cross-Origin Resource Sharing, or CORS. These policies will still be in effect to protect the browser.

We can override this value by whitelisting or blacklisting domains with the $sceDelegateProvider.

Whitelisting urls

In the module’s config() function, we can set new whitelist and blacklists.

1 angular.module('myApp', [])
2 .config(['$sceDelegateProvider',
3 function($sceDelegateProvider) {
4 // Set a new whitelist
5 $sceDelegateProvider.resourceUrlWhitelist(['self']);
6 }]);

To set a new whitelist, we’ll use the resourceUrlWhitelist() method. The function takes one optional parameter.

	whitelist (array)

If a parameter is not passed, then this function serves as a getter and will return the currently set whitelist array.

If the whitelist parameter is passed in, then the array of will replace the resourceUrlWhitelist with the new array.

Each element of the array must either be a regex or the string ‘self’, which refers to all URLs to match against URLs of the same domain as the app. When a regex is used, it is matched against the absolute URL of the resource being tested.

If the array is empty empty, $sce will block ALL URLs.

 Using 'self' will enable sourcing https resources from html documents.

To enable the every single url, to whitelist every domain:

1 angular.module('myApp', [])
2 .config(['$sceDelegateProvider',
3 function($sceDelegateProvider) {
4 // Set a new whitelist
5 $sceDelegateProvider.resourceUrlWhitelist(['.*']);
6 }]);

By default, the whitelist is set to ['self'].

Blacklisting urls

It’s also possible to blacklist URLs instead of whitelisting. It’s often much safer to depend on whitelisting, but we can use them in combination. It’s useful to whitelist a trusted domain and blacklist open redirects served by our domains.

To set a new blacklist, we’ll use the resourceUrlBlacklist() method. This method takes one optional parameter.

	blacklist (array)

If a parameter is not passed in, then the function will return the currently set blacklist array.

If the blacklist parameter is passed in, then the blacklist is replaced by the new array.

Each element of the array must be either a regex or the string ‘self’, although in the case of the blacklist, it’s not useful. When a regex is used, it is matched against the absolute URL of the resource being tested.

The blacklist always has the final say in what is acceptable and what is not acceptable for trusted content.

By default, the blacklist is set to and empty array, [].

$sce API

The $sce library has two main functions we’ll be using as well as several helper functions.

getTrusted

To get the trusted version of a value of a specific type, we can call the getTrusted() method.

The getTrusted() method takes two arguments:

	type (string)

The type of context where the value will be used. See sce types for available types.

	maybeTrusted

This is the return value from $sce.trustAs. If it is invalid, then it will throw an exception.

The $sce library has a few helper methods for the getTrusted() method.

The following method calls are functionally equivalent:

 	getTrustedCss(value)
 	getTrusted($sce.CSS, value)

 	getTrustedHtml(value)
 	getTrusted($sce.HTML, value)

 	getTrustedJs(value)
 	getTrusted($sce.JS, value)

 	getTrustedResourceUrl(value)
 	getTrusted($sce.RESOURCE_URL, value)

 	getTrustedUrl(value)
 	getTrusted($sce.URL, value)

parse

Similar to the $parse service, this converts an Angular expression into a function. If the expression is a literal constant, it will call to the $parse service, otherwise it will call to the $sce.getTrusted() service.

The parse() method takes two arguments:

	type (string)

The type of $sce context where the value will be used. See sce types for available types.

	expression (string)

The Angular expression to compile.

The parse() method returns a function of the form: function(context, locals) where:

	context (object)

The object where the expression should be evaluated against. Typically, this will be a $scope object.

	locals (object)

These are local variables, mostly useful for overriding values in the context.

The $sce library has a few helper methods for the parse() method.

The following method calls are functionally equivalent:

 	parseAsCss(expr)
 	parseAs($sce.CSS, expr)

 	parseAsHtml(expr)
 	parseAs($sce.HTML, expr)

 	parseAsJs(expr)
 	parseAs($sce.JS, expr)

 	parseAsResourceUrl(expr)
 	parseAs($sce.RESOURCE_URL, expr)

 	parseAsUrl(expr)
 	parseAs($sce.URL, expr)

trustAs

The trustAs() method returns an object that is trusted by angular for use in a specific strict contextual escaping context. Bindings such as ng-bind-html and ng-include use the provided value.

The trustAs() method takes two arguments:

	type (string)

The type of $sce context where the value will is safe for us. See sce types for available types.

	value

The value that can be used to stand in for the provided value.

The trustAs() method returns a value that can be used where angular expects a $sce.trustAs() return value.

The $sce library has a few helper methods for the trustAs() method.

The following method calls are functionally equivalent:

 	trustAsHtml(value)
 	trustAs($sce.HTML, value)

 	trustAsJs(value)
 	trustAs($sce.JS, value)

 	trustAsResourceUrl(value)
 	trustAs($sce.RESOURCE_URL, value)

 	trustAsUrl(value)
 	trustAs($sce.URL, value)

isEnabled()

The isEnabled() method takes no parameters and returns a boolean that tells us if the sce environment is enabled. If it is, then it will return true, otherwise it will return false.

Configuring $sce

If we want to complete disable the sce subsystem from running our app (although we discourage this as it provides security by default), we can do so in the config() function of our app:

1 angular.module('myApp', [])
2 .config(['$sceProvider',
3 function($sceProvider) {
4 // Turn off SCE
5 $sceProvider.enabled(false);
6 }]);

Trusted context types

The $sce library has five built-in context types that are supported by default. These context types are what angular uses to parse and determine what is safe in one context vs. another.

 	Context
 	Description

 	$sce.HTML
 	Tells Angular this is safe HTML to source in the app

 	$sce.CSS
 	Tells Angular that it’s safe to source this as CSS in the app

 	$sce.URL
 	Tells Angular that the URL is safe to follow as a link

 	$sce.RESOURCE_URL
 	Tells Angular that the URL is safe to follow as a link and that the contents are safe to include in the app

 	$sce.JS
 	Tells Angular that the contents are safe to execute in the application

AngularJS and Internet Explorer

AngularJS and Internet Explorer

AngularJS works seamlessly with most modern browsers. Safari, Google Chrome, Google Chrome Canary, and Firefox work great. The notorious Internet Explorer version 8 and earlier can cause us problems.

 	
 [image: information]
 	
 For more information, read the AngularJS docs guide on IE.

If we are planning on releasing our applications for Internet Explorer v8.0 or earlier, we will need to pay some extra attention to help help support it.

Internet explorer does not like element names that start with a prefix ng: as it considers it as an XML namespace. It will ignore these elements unless it has a corresponding namespace declaration:

1 <html xmlns:my="ignored">

 	
 [image: information]
 	
 This xmlns:ng=”http://angularjs.org” makes IE feel more comfortable.

If we use non-standard HTML tags, then we need to create the tags in the head of the document for IE to recognize them. We can do this simply in the head element.

 1 <!doctype html>
 2 <html xmlns:ng="http://angularjs.org">
 3 <head>
 4 <!--[if lte IE 8]
 5 <script>
 6 document.createElement('ng-view');
 7 // Other custom elements
 8 </script>
 9 <![endif]-->
10 </head>
11 <body>
12 <!-- ... -->

It is recommended that we use the attribute directive form as we don’t need to create custom elements to support IE:

1 <div data-ng-view></div>

To make AngularJS work with IE7 and earlier, we’ll need to polyfill JSON.stringify. We can use the JSON3 or JSON2 implementations.

In our browser, we’ll need to conditionally include this file in the head. Download the file, store is in a location relative to the root of our application, and reference it in the head like so:

1 <!doctype html>
2 <html xmlns:ng="http://angularjs.org">
3 <head>
4 <!--[if lte IE 8]
5 <script src="lib/json2.js"></script>
6 <![endif]-->
7 </head>
8 <body>
9 <!-- ... -->

To use the ng-app directive with IE support, set the element id to ng-app as well.

1 <body id="ng-app" ng-app="myApp">
2 <!-- ... -->

We can take advantage of the angular-ui-utils library’s ie-shiv module to help give us custom elements in our DOM.

In order to use the ui-utils ie-shiv library, we’ll need to ensure we have the angular-ui library installed. Installation is easy. Download the the ui-utils library and include the module. The ui-utils library can be found on github here: https://github.com/angular-ui/ui-utils.

Ensure we’ve included the ui-utils in an accessible location to your app and include the file just like this:

1 <!--[if lte IE 8]>
2 <script type="text/javascript">
3 // define our custom directives here
4 </script>
5 <script src="lib/angular-ui-ieshiv.js"></script>
6 <![endif]-->

With that in place, we’ll only activate the ie-shiv on Internet Explorer versions 8 and earlier. The shiv enables us to add our custom directives onto it’s global object, which will in turn create the proper declarations for IE.

The shiv library looks for the window.myCustomTags object. If it’s defined, it will include these tags at load time along with the rest of the angular library directives:

1 <!--[if lte IE 8]>
2 <script type="text/javascript">
3 // define our custom directives here
4 window.myCustomTags = ['myDirective'];
5 </script>
6 <script src="lib/angular-ui-ieshiv.js"></script>
7 <![endif]-->

Ajax caching

IE is the only major browser that caches XHR requests. An efficient way to avoid this poor behavior is by setting an HTTP response header of Cache-Control to be no-cache for every request.

This is the default behavior for modern browsers and will help give a better experience for IE users.

We can change the default headers for every single request like so:

1 .config(function($httpProvider) {
2 $httpProvider.defaults
3 .headers.common['Cache-Control'] = 'no-cache';
4 });

SEO with AngularJS

Search engines, such as Google and Bing are engineered to crawl static web pages, not javascript-heavy, client-side apps. This is typical of a search engine which does not render javascript when the search bot is crawling over web pages.

This is because our javascript-heavy apps need a javascript engine to run, like PhantomJS or v8, for instance. Web crawlers typically load a web page without using a javascript interpreter.

 Search engines do not include JS interpreters in their crawlers for good reason, they don’t need to and it slows them down and makes them more inefficient for crawling the web.

Getting angular apps indexed

There are several different ways that we can tell Google to handle indexing our app. One, the more common approach is by using a backend to serve our angular app. This has the advantage of being simple to implement without much duplication of code.

The second approach is to render all of the content delivered by our angular app inside a <noscript> tag in our javascript, which we will cover lightly as it’s mostly dependent upon how we deliver our apps to succinctly cover it without duplicating efforts.

Server-side

Google and other advanced search engines support the hashbang URL format, which is used to identify the current page that’s being accessed at a given URL. These search engines transform this URL into a custom URL format that enables them to be accessible by the server.

The search engine visits the URL and expects to get the HTML that our browsers will receive, with the fully rendered HTML content. For instance, Google will turn the hashbang URL from:

1 http://www.ng-newsletter.com/#!/signup/page

Into the URL:

1 http://www.ng-newsletter.com/?_escaped_fragment_=/signup/page

Within our angular app, we will need to tell Google to handle our site slightly differently depending upon which style we handle.

Hashbang syntax

Google’s Ajax crawling specification was written and originally intended for delivering URLs with the hashbang syntax, which was an original method of creating permalinks for JS applications.

We’ll need to configure our app to use the hashPrefix (default) in our routing:

1 angular.module('myApp', [])
2 .configure(['$location', function($location) {
3 $location.hashPrefix('!');
4 }]);

HTML5 routing mode

The new HTML5 pushState doesn’t work the same way as it modifies the browser’s URL and history. To get angular apps to “fool” the search bot, we can add a simple element to the header:

1 <meta name="fragment" content="!">

This tells the Google spider to use the new crawling spec to crawl our site. When it encounters this tag, instead of crawling our site like normal, it will revisit the site using the ?_escaped_fragment_= tag.

This assumes that we’re using HTML5 mode with the $location service:

1 angular.module('myApp', [])
2 .configure(['$routeProvider',
3 function($routeProvider) {
4 $routeProvider.html5Mode(true);
5 }]);

With the _escaped_fragment_ in our query string, we can use our backend server to serve static HTML instead of our client-side app.

Now, our backend can detect if the request has the _escaped_fragment_ in the request and and we can serve static HTML back instead of our pure angular app.

 	
 [image: information]
 	
 This can be accomplished using a proxy, like Apache or Nginx or our backend service. Setting these up is out of scope for this book, however we’ll discuss how to set this up with a NodeJS app.

Options for handling SEO from the server-side

We have a number of different options available to us to make our site SEO-friendly. We’ll walk through three different ways to deliver our apps from the server-side:

	Using node/express middleware

 	Use Apache to rewrite URLS

 	Use nginx to proxy URLS

Using node/express middleware

Note: although we are using NodeJS in this example, this is simply one implementation of how to serve static HTML snapshots to our backend. This technique works regardless of the backend you’re using to deliver your HTML.

To deliver static HTML using NodeJS and Express (the web application framework for NodeJS), we’ll add some middleware that will look for the _escaped_fragment_ in our query parameters:

 1 // ideas shared by
 2 // http://johanneskueber.com/blog/2013/03/optimizing-angularjs-in-html5-mode-for-\
 3 seo-with-node-js-and-expressjs
 4 // In our app.js configuration
 5 app.use(function(req, res, next) {
 6 var fragment = req.query._escaped_fragment_;
 7
 8 if (!fragment) return next();
 9
10 // If the fragment is empty, serve the
11 // index page
12 if (fragment === "" || fragment === "/")
13 fragment = "/index.html";
14
15 // If fragment does not start with '/'
16 // prepend it to our fragment
17 if (fragment.charAt(0) !== "/")
18 fragment = '/' + fragment;
19
20 // If fragment does not end with '.html'
21 // append it to the fragment
22 if (fragment.indexOf('.html') == -1)
23 fragment += ".html";
24
25 // Serve the static html snapshot
26 try {
27 var file = __dirname + "/snapshots" + fragment;
28 res.sendfile(file);
29 } catch (err) {
30 res.send(404);
31 }
32 });

This middleware expects our snapshots to exist in a top-level directory called ‘/snapshots’ and serve files based upon the request path.

For instance, it will serve a request to / as index.html, while it will serve a request to /about as about.html in the snapshots directory.

Use Apache to rewrite URLS

If we’re using the apache server to deliver our angular app, we can add a few lines to our configuration that will serve snapshots instead of our javascript app.

We can use the mod_rewrite mod to detect if the route being requested includes the _escaped_fragment_ query parameter or not. If it does include it, then we’ll rewrite the request to point to the static version in the /snapshots directory.

In order to set the rewrite in motion, we’ll need to enable the appropriate modules:

1 $ a2enmod proxy
2 $ a2enmod proxy_http

Then we’ll need to reload the apache config:

1 $ sudo /etc/init.d/apache2 reload

We can set the rewrite rules either in the virtualhost configuration for the site or the .htaccess file that sits at the root of the server directory.

1 RewriteEngine On
2 Options +FollowSymLinks
3 RewriteCond %{REQUEST_URI} ^/$
4 RewriteCond %{QUERY_STRING} ^_escaped_fragment_=/?(.*)$
5 RewriteRule ^(.*)$ /snapshots/%1? [NC,L]

Use nginx to proxy URLS

If we’re using nginx to serve our angular app, we can add some configuration to serve snapshots of our app if there is an _escaped_fragment_ parameter in the query strings.

Unlike Apache, nginx does not require us to enable a module, so we can simply update our configuration to replace the path with the question file instead.

In our nginx configuration file (For instance, /etc/nginx/nginx.conf), ensure your configuration looks like this:

 1 server {
 2 listen 80;
 3 server_name example;
 4
 5 if ($args ~ "_escaped_fragment_=/?(.+)") {
 6 set $path $1;
 7 rewrite ^ /snapshots/$path last;
 8 }
 9
10 location / {
11 root /web/example/current/;
12 # Comment out if using hash urls
13 if (!-e $request_filename) {
14 rewrite ^(.*)$ /index.html break;
15 }
16 index index.html;
17 }
18 }

Once this is complete, we’re good to reload our configuration:

1 sudo /etc/init.d/nginx reload

Taking snapshots

We can take snapshots of our HTML app to deliver our backend app, using a tool like PhantomJS or zombie.js to render our pages. When a page is requested by Google using the _escaped_fragment_ query parameter, we can simply return and render this page.

We’ll discuss two methods to take snapshots, using zombie.js and using a grunt tool. We’re not covering using the fantastic PhantomJS tool as there are plenty of great resources that demonstrate it.

Using Zombie.js to grab html snapshots

To set up zombie.js, we’ll need to install the npm package zombie:

1 $ npm install zombie

Now, we’ll use NodeJS to save our file using zombie. First, a few helper methods we’ll use in the process:

 1 var Browser = require('zombie'),
 2 url = require('url'),
 3 fs = require('fs'),
 4 saveDir = __dirname + '/snapshots';
 5
 6 var scriptTagRegex = /<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi;
 7
 8 var stripScriptTags = function(html) {
 9 return html.replace(scriptTagRegex, '');
10 }
11
12 var browserOpts = {
13 waitFor: 2000,
14 loadCSS: false,
15 runScripts: true
16 }
17
18 var saveSnapshot = function(uri, body) {
19 var lastIdx = uri.lastIndexOf('#/');
20
21 if (lastIdx < 0) {
22 // If we're using html5mode
23 path = url.parse(uri).pathname;
24 } else {
25 // If we're using hashbang mode
26 path =
27 uri.substring(lastIdx + 1, uri.length);
28 }
29
30 if (path === '/') path = "/index.html";
31
32 if (path.indexOf('.html') == -1)
33 path += ".html";
34
35 var filename = saveDir + path;
36 fs.open(filename, 'w', function(e, fd) {
37 if (e) return;
38 fs.write(fd, body);
39 });
40 };

Now all we need to do is run through our pages, turn every link from a relative link into an absolute link (so the crawler can follow them), and save the resulting html.

We’re setting a relatively high waitFor in the browser options above. This will cover 90% of the cases we care about. If we want to get more precise on how and when we take a snapshot, instead of waiting the 2 seconds we’ll need to modify our angular app to fire an event and listen for the event in our zombie browser.

Since we like to automate as much as possible and prefer not to muck with our angular code, we prefer to set our timeout relatively high to attempt to let the code settle down.

Our crawlPage() function:

 1 var crawlPage = function(idx, arr) {
 2 // location = window.location
 3 if (idx < arr.length) {
 4 var uri = arr[idx];
 5 var browser = new Browser(browserOpts);
 6 var promise = browser.visit(uri)
 7 .then(function() {
 8
 9 // Turn links into absolute links
10 // and save them, if we need to
11 // and we haven't already crawled them
12 var links = browser.queryAll('a');
13 links.forEach(function(link) {
14 var href = link.getAttribute('href');
15 var absUrl = url.resolve(uri, href);
16 link.setAttribute('href', absUrl);
17 if (arr.indexOf(absUrl) < 0) {
18 arr.push(absUrl);
19 }
20 });
21
22 // Save
23 saveSnapshot(uri, browser.html());
24 // Call again on the next iteration
25 crawlPage(idx+1, arr);
26 });
27 }
28 }

Now we can simply call the method on our first page:

1 crawlPage(0, ["http://localhost:9000"]);

Using grunt-html-snapshot

Our prefered method of taking snapshots is by using the grunt tool grunt-html-snapshot. Since we use yeoman and grunt is already in our build process, we set up this task to run after we make a release of our apps.

To install grunt-html-snapshot, we’ll use npm like so:

1 npm install grunt-html-snapshot --save-dev

If we’re not using yeoman, we’ll need to include this task as a grunt task in our Gruntfile.js:

1 grunt.loadNpmTasks('grunt-html-snapshot');

Once this is set, we’ll set some configuration about our site. To set up configuration, we’ll create a new config block in our Gruntfile.js that looks like:

1 htmlSnapshot: {
2 debug: {
3 options: {}
4 },
5 prod: {
6 options: {}
7 }
8 }

Now we simply get to add our different options for the different stages:

 1 htmlSnapshot: {
 2 debug: {
 3 options: {
 4 snapshotPath: 'snapshots/',
 5 sitePath: 'http://127.0.0.1:9000/',
 6 msWaitForPages: 1000,
 7 urls: [
 8 '/',
 9 '/about'
10]
11 }
12 },
13 prod: {
14 options: {}
15 }
16 }

To see a list of the entire available configuration options, check out the documentation page at https://github.com/cburgdorf/grunt-html-snapshot.

Prerender.io

Alternatively, we can use an open-source tool such as Prerender.io, which includes a node server that renders our site on-the-fly and an express middleware that communicates with the backend to prerenderHTML on-the-fly.

Essentially, prerender.io will take a url and returns the rendered HTML (with no script tags). Essentially, the prerender server we’ll deploy will be called from our app like so:

 GET http://our-prerenderserver.com/http://localhost:9000/#/about

This GET will return the rendered content of our #/about page.

Setting up a prerender cluster is actually pretty easy to do. We’ll also show you how to integrate your own prerender server into your node app. Prerender.io is also avaialble for Ruby on Rails through a gem, but we won’t cover how to set it up.

Setting up our own server to run it is pretty easy. Simply run the npm install to install the dependencies and run the command through either foreman or node:

1 $ npm install
2 $ node index.js
3 # Or through foreman
4 $ foreman start

The prerender library is also convenient to run on heroku:

1 $ git clone https://github.com/collectiveip/prerender.git
2 $ heroku create
3 $ git push heroku master

We store our rendered HTML in S3, so we recommend you use the built-in s3 cache. Read the docs how to set this up here.

After our server is running, we just need to integrate the fetching through our app. In express, this is very easy using the node library prerender-node.

To install prerender-node, we’ll use npm:

1 $ npm install --save prerender-node

After this is installed, we’ll tell our express app to use this middleware:

1 var prerender =
2 require('prerender-node').set('prerenderServiceUrl', 'http://our-prerenderserve\
3 r.com/');
4 app.use(prerender);

And that is it! This tells our express app that if we see a crawler request (defined by having the _escaped_fragment_ or the user agent string), then make a GET request to our prerender service at the appropriate url and get the prerendered HTML for the page.

<noscript> approach

We can also use the <noscript> tag to render our pages without needing to resort to using a server backend. Unfortunately, this is complex in that for all of our pages, we’ll need to copy all of the elements of the page from outside of the <noscript> tag into a noscript tag.

This can become cumbersome and take a lot of work to keep the two in-sync, so we don’t recommend this approach without a build tool to assist.

Building Angular Chrome apps

Building Angular Chrome apps

The Chrome web browser is Google’s custom browser. Not only is it incredibly speedy and on the bleeding edge of web development, it is at the forefront of delivering web experiences both on and off the web.

Chrome Apps are embedded applications that run within the web browser, but are intended on delivering a native app feel. Since they run within Chrome itself, they are written in HTML5, javascript, CSS3, and have access to native-like capabilities that true web applications do not.

Chrome apps have access to the Chrome API and services and can provide a integrated desktop-like experiences to the user.

One more interesting differentiation between Chrome apps and webapps is that they always load locally, so they show up immediately, rather than waiting for the network to fully download the components. This greatly improves the performance and our user’s experience with running our apps.

Understanding the Chrome apps

Let’s dive into looking at how Chrome apps actually work and how we can start building our own.

Every Chrome application has three core files:

manifest.json

The manifest.json file that describes the meta-data about the application, such as the name, description, version, and how to launch our application.

A background script

The background script that sets up how our application responds to system-level events, such as a user installing our app or launching it, etc.

A view

Most Chrome applications have a view. This component is optional, but will most generally always be used for our applications.

Building our Chrome app

In this section, we’ll walk through how to create an advanced Chrome application using Angular. We’re going to create a clone of the fantastic chrome webapp Currently by the team at Rainfall.

 [image: Currently]Currently

We’ll be building a clone that we’ll call Presently.

Architecting Presently

When we’re building Presently, we’ll need to take into account the application architecture. This will give us insight into how we’ll build the app when we get to code.

Like Currently, Presently will be a “newtab” app. This means that it will launch every time we open a new tab.

Presently has two main screens:

	The home screen

This is the screen that features the current time and the current weather. It also features several weather icons beside the weather.

	The settings screen

This screen will allow our users to change their location within the app.

In order to support the home screen, we’ll need to be able to show a properly formatted date and time as well as fetch weather from a remote API service.

To support the settings screen, we’ll integrate with a remote API service to auto-suggest potential locations for an input box.

Finally, we’ll use the basic localstorage (session storage) to persist our settings across the app.

Building the skeleton

Building our app, we’ll set up a file structure like so:

 [image: File structure]File structure

We’ll place our css files in css/, our custom fonts in fonts/, and our javascript files in js/. The main javascript file will be set in the js/app.js file and the HTML for our app will be placed in tab.html at the root.

 	
 [image: information]
 	
 There are great tools to help bootstrap Chrome app extensions such as yeoman.

Before we can start up our Chrome extension, we’ll need to grab a few dependencies.

We’ll grab the latest version of angular.min.js (1.2.2*) as well as angular-route.min.js from angularjs.org and save them to the js/vendor/ directory.

Lastly, we’ll use twitter’s bootstrap 3 framework to style our app, so we’ll need to get the bootstrap.min.css and save it to css/ from getbootstrap.com.

 	
 [image: information]
 	
 In production, it’s often more efficient when working with multiple developers to use a tool like Bower to manage dependencies. Since we’re building a newtab app, however it’s important we keep our app lightweight so it launches quickly.

manifest.json

With every Chrome app we’ll write, we’ll need to set up a manifest.json. This manifest tells Chrome how the application should run, what files it should use, what permissions it has, etc. etc.

Our manifest.json will need to describe our app as newtab app as well as describing the content_security_policy (the policies that describe what our application can and cannot do) and the background script (needed by Chrome).

 1 {
 2 "manifest_version": 2,
 3 "name": "Presently",
 4 "description": "A currently clone",
 5 "version": "0.1",
 6 "permissions": [],
 7 "background": {
 8 "scripts": ["js/vendor/angular.min.js"]
 9 },
10 "content_security_policy": "script-src 'self'; object-src 'self'",
11 "chrome_url_overrides" : {
12 "newtab": "tab.html"
13 }
14 }

The manifest.json is relatively straightforward with the name, the manifest_version, the version, etc. In order to tell Chrome to launch our app as a newtab app, we set the app to override the newtab page.

tab.html

The main HTML file for our application is the tab.html file. This is the file that will be loaded when we open a new tab in Chrome.

We’ll set up the basic angular app inside of the tab.html file:

 1 <!doctype html>
 2 <html data-ng-app="myApp" data-ng-csp="">
 3 <head>
 4 <meta charset="UTF-8">
 5 <title>Presently</title>
 6 <link rel="stylesheet" href="css/bootstrap.min.css">
 7 <link rel="stylesheet" href="css/main.css">
 8 </head>
 9 <body>
10 <div class="container">
11 </div>
12 <script src="./js/vendor/angular.min.js"></script>
13 <script src="./js/vendor/angular-route.min.js"></script>
14 <script src="./js/app.js"></script>
15 </body>
16 </html>

This very basic structure of an angular application looks almost identical to any angular app, with one exception: data-ng-csp="".

The ngCsp directive enables Content Security Policy (or CSP) support for our angular app. Since Chrome apps prevent the browser from using eval or function(string) generated functions and Angular uses the function(string) generated function for speed, ngCsp will cause Angular to evaluate all expressions.

This compatibility mode comes as a cost of performance, however as it will execute operations much slower, but will not throw any security violations in the process.

CSP also forbids javascript files from inlining stylesheet rules, so we’ll need to include angular-csp.css manually.

The angular-csp.css file can be found at http://code.angularjs.org/snapshot/angular-csp.css.

Lastly, ngCsp must be placed alongside the root of our angular apps:

1 <html ng-app ng-csp>

 	
 [image: information]
 	
 Without the ng-csp directive, our Chrome app will not run as it will throw a security exception. If you see a security exception being thrown, make sure you check the root element for the directive.

Loading the app in Chrome

With our app in progress, let’s load it into Chrome so we can follow our progress along in the browser. To load our app in Chrome, navigate to the url: chrome://extensions/.

Once there, click on the button “Load unpackged extension…” and find the root directory (the directory that contains our manifest.json file from above).

 [image: Load unpacked extension]Load unpacked extension

Once the application has been loaded into the Chrome browser, open a new tab and we should see our empty app with one error (don’t worry, we’ll fix this shortly):

 [image: Load unpacked extension]Load unpacked extension

 	
 [image: information]
 	
 Anytime that we update or modify our manifest.json file, we’ll need to click on the Reload link underneath our Chrome app in chrome://extensions.

The main module

Our entire angular application will be built in the js/app.js file. For production versions of our app, we may want to split this functionality into multiple files or use a tool like grunt to compress and concatenate them for us.

Our app is called myApp, so we’ll create an angular module with the same name:

1 angular.module('myApp', [])

With this, our app will run in the browser without any issues.

Building the homepage

We’ll start by building the home section in our app. In this section, we’ll work on putting together components of our app that will make the application run. In the next section, we’ll set up the multi-route application.

Building the clock

The main feature of Presently is the large clock that sits right at the top of the application and updates every second. In Angular, we can set this up pretty simply.

We’ll first start by building a MainCtrl will be responsible for managing the home screen. Inside this MainCtrl controller, we’ll set up a timeout that will tick every second and update a local scope variable.

 1 angular.module('myApp', [])
 2 .controller('MainCtrl', function($scope, $timeout) {
 3 // Build the date object
 4 $scope.date = {};
 5
 6 // Update function
 7 var updateTime = function() {
 8 $scope.date.raw = new Date();
 9 $timeout(updateTime, 1000);
10 }
11
12 // Kick off the update function
13 updateTime();
14 });

Every second that our MainCtrl is visible, the updateTime() function will be ran to update the $scope.date.raw timestamp and our view will be updated.

In order for us to see anything in the view load in our Chrome app, we’ll need to bind this data to the document. We can set up this binding using the normal {{ }} template syntax:

1 <div class="container">
2 <div ng-controller="MainCtrl">
3 {{ date.raw }}
4 </div>
5 </div>

When we go back to the browser and refresh, we’ll see an unformatted Date object ticking in the view:

 [image: Unformatted date]Unformatted date

The date is very ugly in the browser as it stands now. We can utilize Angular’s built-in filters to format our date in a much more elegant manner.

Following along with how Currently formats the date in their homescreen, we’ll format ours similarly. Updating the view, we will move our date into it’s own nested div and add formatting to display the date:

1 <div class="container">
2 <div ng-controller="MainCtrl">
3 <div id="datetime">
4 <h1>{{ date.raw | date:'hh mm ss' }}</h1>
5 </div>
6 </div>
7 </div>

With a little CSS and help from bootstrap, our dates will appear on the screen in a much more human-friendly format.

 [image: First screen]First screen

We’re using the CSS rules to align the date and times to the center of the screen and increasing the font-size to be prominently displayed on-screen.

1 #datetime {
2 text-align: center;
3 }
4 #datetime h1 {
5 font-size: 6.1em;
6 }

We can add a second date in our view that simply shows our date with a human-friendly display. This is simply a matter of adding a second formatted date:

1 <!-- ... -->
2 <div id="datetime">
3 <h1>{{ date.raw | date:'hh mm ss' }}</h1>
4 <h2>{{ date.raw | date:'EEEE, MMMM yyyy' }}</h2>
5 </div>
6 <!-- ... -->

Our CSS for the #datetime h2 tag simply increases the size of the <h2> tag:

1 #datetime h2 {
2 font-size: 1.0em;
3 }

 [image: Full dates]Full dates

Sign up for wunderground’s weather API

Our app will need to reach out to foreign sources to fetch the current weather for the location we’re interested in. In this application, we’re using the wunderground api.

In order to use the wunderground api, we’ll need to get an access api key.

To get an access api key, we’ll need to sign up first. Head to the weather api wunderground page at http://www.wunderground.com/weather/api/ and click “Sign Up for Free!”.

 [image: Sign up for wunderground]Sign up for wunderground

Fill out the relevant details on the following page and we’ll click through until we reach the detail page that shows our API key.

 [image: Fill out details]Fill out details

Once we’re set, locate the wunderground api key and save it. We’ll be using it shortly.

Building the angular service

We won’t place our logic into the Controller to fetch the weather as it is both inefficient (as the controller will be blown away when we navigate to another page and we’ll need to re-call the api every time the controller is loaded) and poor design to mix in business logic details with implementation details.

Instead, we’ll use a service. A service persists across controllers, for the duration of the application’s lifetime and is the appropriate place for us to hide business logic away from the controller.

As we’ll need to configure our app when it boots up, we’ll use the .provider() method of creating a service. This is the only method for creating services that can be injected into .config() functions.

To build the service, we’ll use the .provider() api method that takes both a name of the service as well as a function that defines the actual provider.

1 angular.module('myApp', [])
2 .provider('Weather', function() {
3 })

Inside here, we’ll need to define a $get() function that returns the methods available to the service. To configure this service, we’ll need to allow a method for the api key to be set on configuration. These methods will live outside of the scope of the $get() function.

 1 .provider('Weather', function() {
 2 var apiKey = "";
 3
 4 this.setApiKey = function(key) {
 5 if (key) this.apiKey = key;
 6 };
 7
 8 this.$get = function($http) {
 9 return {
10 // Service object
11 }
12 }
13 })

With this minimal amount of code, we can now inject the Weather service into our .config() function and configure the service with our wunderground api key.

When angular encounters a provider created with the .provider() api method, it creates a [Name]Provider injectable object. This is what we’ll inject into our config function:

1 // .provider('Weather', function() {
2 // ...
3 // })
4 .config(function(WeatherProvider) {
5 WeatherProvider.setApiKey('YOUR_API_KEY');
6 })
7 // .controller('MainCtrl', function($scope, $timeout) {
8 // ...

The wunderground API requires that we pass the API key with our request in the URL. In order to pass our api key in with every request, we’ll create a function that will generate the url.

1 var apiKey = "";
2 // ...
3 this.getUrl = function(type, ext) {
4 return "http://api.wunderground.com/api/" +
5 this.apiKey + "/" + type + "/q/" +
6 ext + '.json';
7 };

Now, we can create our API call for the Weather service to get us the latest forecast data from the wunderground API.

We’ll create our own promises that we can use to resolve in the view as we’ll want to return only the relevant results from our API call:

 1 this.$get = function($q, $http) {
 2 var self = this;
 3 return {
 4 getWeatherForecast: function(city) {
 5 var d = $q.defer();
 6 $http({
 7 method: 'GET',
 8 url: self.getUrl("forecast", city),
 9 cache: true
10 }).success(function(data) {
11 // The wunderground API returns the
12 // object that nests the forecasts inside
13 // the forecast.simpleforecast key
14 d.resolve(data.forecast.simpleforecast);
15 }).error(function(err) {
16 d.reject(err);
17 });
18 return d.promise;
19 }
20 }
21 }

Now, we can inject the Weather service into our controller and simply call the method getWeatherForecast() and respond to the promise instead of dealing with the complexity of the API in our controller.

Back to our MainCtrl, we can inject the Weather service and set the result on our scope:

 1 .controller('MainCtrl',
 2 function($scope, $timeout, Weather) {
 3 // ...
 4 $scope.weather = {}
 5 // Hardcode San_Francisco for now
 6 Weather.getWeatherForecast("CA/San_Francisco")
 7 .then(function(data) {
 8 $scope.weather.forecast = data;
 9 });
10 // ...

To view the result of the API call in our view, we’ll need to update our tab.html. For debugging purposes, we like to use the json filter inside a <pre> tag:

1 <div id="forecast">
2 <pre>{{ weather.forecast | json }}</pre>
3 </div>

 [image: Weather API debugging call]Weather API debugging call

We can see that the view is updated with the latest weather and now we’re good to go to create a more polished view.

The view itself will iterate over the forecast.forecastday collection. For each element, we’ll create a view that displays the weather icon given to us by the wunderground api as well as the human-readable date and high.

 1 <div id="forecast">
 2 <ul class="row list-unstyled">
 3 <li ng-repeat="day in weather.forecast.forecastday" class="col-md-3">
 4 <div ng-class="{today: $index == 0}">
 5
 6 <h3>{{ day.high.fahrenheit }}</h3>
 7 <h4 ng-if="$index == 0">Now</h4>
 8 <h4 ng-if="$index != 0">{{ day.date.weekday }}</h4>
 9 </div>
10
11
12 </div>

 [image: Clean HTML weather view]Clean HTML weather view

The style we’ve set in the view is set as:

 1 #forecast ul li {
 2 font-size: 4.5em;
 3 text-align: center;
 4 }
 5 #forecast ul li h3 {
 6 font-size: 1.4em;
 7 }
 8 #forecast ul li .today h3 {
 9 font-size: 1.8em;
10 }

A settings screen

Currently our app only has one view, with a hard-coded city that fetched for every browser. Although this works for all of us here in San Francisco, it does not work for anyone outside of it.

In order to allow our users the ability to customize their experience with Presently, we’ll need to add a second screen: a setting screen.

To introduce a second screen (and multiple views), we’ll need to add the ngRoute module as a dependency of our app module.

1 angular.module('myApp', ['ngRoute'])

Now we can define our separate views and routes as well as pull our home screen view out of the main tab.html view.

In defining our routes, note that we’ll need two; one for each of the two different screens of our app.

 1 // angular.module(...)
 2 // ...
 3 .config(function($routeProvider) {
 4 $routeProvider
 5 .when('/', {
 6 templateUrl: 'templates/home.html',
 7 controller: 'MainCtrl'
 8 })
 9 .when('/settings', {
10 templateUrl: 'templates/settings.html',
11 controller: 'SettingsCtrl'
12 })
13 .otherwise({redirectTo: '/'});
14 })

Now we can take our entire tab.html html between the .container div, move it into the file templates/home.html, and replace it with <div ng-view></div>.

1 <div class="container">
2 <div ng-view></div>
3 </div>

When we refresh the page, we’ll see that nothing has appeared to have changed, but our html is no longer loaded inside the tab.html, but from the templates/home.html template.

Currently, we have no way of navigating between our two screens. We can add some footer-based navigation that we can allow our users to navigate between the pages. We’ll simply add two links at the bottom of the page to navigate between pages, like so:

1 <div id="actionbar">
2 <ul class="list-inline">
3
4
5
6 </div>

In order to add them to the the bottom right-hand corner of the screen, we’ll apply a bit of CSS to absolutely position them:

1 #actionbar {
2 position: absolute;
3 bottom: 0.5em;
4 right: 1.0em;
5 }
6 #actionbar a {
7 font-size: 2.2rem;
8 color: #000;
9 }

Now, if we navigate to our settings page by clicking on the cog button, we’ll see that nothing is rendered. We need to define our SettingsCtrl so we can start manipulating the view and working with our user.

1 // ...
2 .controller('SettingsCtrl',
3 function($scope) {
4 // Our controller will go here
5 })

The settings screen itself will feature a single form that will be responsible for allowing the user to change cities that they are interested in. The HTML itself will look similar to this (with a few features we have yet to implement):

1 <h2>Settings</h2>
2 <form ng-submit="save()">
3 <input type="text"
4 ng-model="user.location"
5 placeholder="Enter a location" />
6 <input class="btn btn-primary"
7 type="submit" value="Save" />
8 </form>

Implementing a User service

For the same reasons that we are hiding away the complexity of the wunderground API, we’ll also hide away our User api. This will enable us to use localstorage as well as communicate across our controllers about the user settings at any part of the app.

The UserService itself is straightforward and does not need to be configured in our app. Without the use of localstorage, our UserService will simply be:

 1 // ...
 2 .factory('UserService', function() {
 3 var defaults = {
 4 location: 'autoip'
 5 };
 6 var service = {
 7 user: defaults
 8 };
 9
10 return service;
11 })

This service will hold on to our user object for the lifetime of the application. That is to say, while the browser window is open, the settings of the application will remain constant to the user’s settings. However, if our user opens a new tab in chrome, these settings disappear, which is not ideal.

We can persist our settings across our app by using Chrome’s sessionStorage capabilities. Luckily, this api is straightforward and simple.

We’ll add two functions to the UserService:

	save

 	restore

Even with these capabilities, the UserService has not grown

 1 // ...
 2 .factory('UserService', function() {
 3 var defaults = {
 4 location: 'autoip'
 5 };
 6
 7 var service = {
 8 user: {},
 9 save: function() {
10 sessionStorage.presently =
11 angular.toJson(service.user);
12 },
13 restore: function() {
14 // Pull from sessionStorage
15 service.user =
16 angular.fromJson(sessionStorage.presently) || defaults
17
18 return service.user;
19 }
20 };
21 // Immediately call restore from the session storage
22 // so we have our user data available immediately
23 service.restore();
24 return service;
25 })
26 // ...

Now, we can inject this UserService across our Chrome app and have access to the same user data. Heading back to our SettingsCtrl, we can now set up a user object to define settings with the new service:

1 .controller('SettingsCtrl',
2 function($scope, UserService) {
3 $scope.user = UserService.user;
4 });

If we refresh the browser, we’ll now see that we have a default set for the user as 'autoip', which is the default we set up in the UserService definition.

 [image: Settings page]Settings page

Now, we only need a way for our user to save their data into their session storage so we can use it across the app. In our templates/settings.html, we defined the form as having a ng-submit="save()" action, thus when our user submits the form, the save() function will be called.

Inside our SettingsCtrl, we’ll implement the save() function that will call save on the UserService and persist the user’s data into their sessionStorage.

1 .controller('SettingsCtrl',
2 function($scope, UserService) {
3 $scope.user = UserService.user;
4
5 $scope.save = function() {
6 UserService.save();
7 }
8 });

Now, with the single input field bound to user.location, if we change the value and press save, our user’s sessionStorage will be updated:

 [image: sessionStorage]sessionStorage

By using the UserService in our HomeCtrl, we can now remove the hardcoded value of ‘“CA/San_Francisco”’ and replace it with our new UserService object’s location.

 1 // ...
 2 .controller('MainCtrl',
 3 function($scope, $timeout, Weather, UserService) {
 4 // ...
 5 $scope.user = UserService.user;
 6 Weather.getWeatherForecast($scope.user.location)
 7 .then(function(data) {
 8 $scope.weather.forecast = data;
 9 });
10 // ...
11 })

As we can see, if we flip back and forth from the settings view and input “NY/New_York”, for instance we can see the weather changing based upon the location we place in the settings page.

 [image: New york location]New york location

City autofill/autocomplete

It’s pretty inconvenient to need to type a city that conforms to the wunderground API formats (lat/long, city and state, country codes, etc). Luckily, the wunderground api also provides us an autocomplete API.

Instead of requiring our users to know the specific city format, we’ll provide a list of them for our user’s to select.

 	
 [image: information]
 	
 For simplicity and flexibility purposes, we’re only going to create a raw javascript-based autocomplete, rather than use a plugin library, such as the typeahead.js or jQuery plugin libraries.

To do this, we’ll create a directive that we’ll place on the <input> element that will append a element with a list of suggested places.

 1 .directive('autoFill', function($timeout) {
 2 return {
 3 restrict: 'EA',
 4 scope: {
 5 autoFill: '&',
 6 ngModel: '='
 7 },
 8 compile: function(tEle, tAttrs) {
 9 // Our compile function
10 return function(scope, ele, attrs, ctrl) {
11 // Our link function
12 }
13 }
14 }
15 })

As we will be creating a new element, we’ll need to use the compile function, rather than just the link function and a template, since our element cannot be nested underneath an <input> element.

Without diving too deeply into how the compile function works, we’re going to create a new element and we’ll set up the bindings on our new element:

 1 // ...
 2 compile: function(tEle, tAttrs) {
 3 var tplEl = angular.element('<div class="typeahead">' +
 4 '<input type="text" autocomplete="off" />' +
 5 '<ul id="autolist" ng-show="reslist">' +
 6 '<li ng-repeat="res in reslist" ' +
 7 '>{{res.name}}' +
 8 '' +
 9 '</div>');
10 var input = tplEl.find('input');
11 input.attr('type', tAttrs.type);
12 input.attr('ng-model', tAttrs.ngModel);
13 tEle.replaceWith(tplEl);
14
15 return function(scope, ele, attrs, ctrl) {
16 // ...

Inside of our link function, we’ll bind on a keyup event and check that we have at least a minimum number of characters in our input field. Once there are a minimum number of characters, we’ll run a function set by the use of the directive to fetch the auto-suggested values.

auto-complete api

Examining how we invoke this directive, we call it by passing a function to the auto-fill directive call as well as binding the location to the user.location value:

1 <input type="text"
2 ng-model="user.location"
3 auto-fill="fetchCities"
4 autocomplete="off"
5 placeholder="Location" />

In our Weather service, we’ll create another function that specifically calls the autocomplete api and resolves a promise with a list of suggestions completions for a query term.

 1 getWeatherForecast: function(city) {
 2 // ...
 3 },
 4 getCityDetails: function(query) {
 5 var d = $q.defer();
 6 $http({
 7 method: 'GET',
 8 url: "http://autocomplete.wunderground.com/' +
 9 'aq?query=" +
10 query
11 }).success(function(data) {
12 d.resolve(data.RESULTS);
13 }).error(function(err) {
14 d.reject(err);
15 });
16 return d.promise;
17 }

Back in our SettingsCtrl, we can simply reference this function as the function that retrieves the list of suggested values. Remember, we’ll need to inject the Weather service in the controller to reference it.

1 .controller('SettingsCtrl',
2 function($scope, UserService, Weather) {
3 // ...
4 $scope.fetchCities = Weather.getCityDetails;
5 });

In the directive, we can now call this function that we’ll reference when we create.

 1 // ...
 2 tEle.replaceWith(tplEl);
 3 return function(scope, ele, attrs, ctrl) {
 4 var minKeyCount = attrs.minKeyCount || 3,
 5 timer,
 6 input = ele.find('input');
 7
 8 input.bind('keyup', function(e) {
 9 val = ele.val();
10 if (val.length < minKeyCount) {
11 if (timer) $timeout.cancel(timer);
12 scope.reslist = null;
13 return;
14 } else {
15 if (timer) $timeout.cancel(timer);
16 timer = $timeout(function() {
17 scope.autoFill()(val)
18 .then(function(data) {
19 if (data && data.length > 0) {
20 scope.reslist = data;
21 scope.ngModel = data[0].zmw;
22 }
23 });
24 }, 300);
25 }
26 });
27 // Hide the reslist on blur
28 input.bind('blur', function(e) {
29 scope.reslist = null;
30 scope.$digest();
31 });
32 }

We’re using a timeout so that we only call the function once we are done typing. This is a simple way to prevent the function from being called repeatedly while we’re really only interested in the first call to the suggestion API.

 [image: Autofill in the browser]Autofill in the browser

Sprinkling in timezone support

Finally, we also want our clock to update and reflect the new location that the user has set in their settings. Updating the clock to include timezone support is easy to add as we’ve implemented the most difficult part already through the autocomplete API.

First, we’ll add one more attribute to our directive usage as timezone:

1 <input type="text"
2 ng-model="user.location"
3 timezone="user.timezone"
4 auto-fill="fetchCities"
5 autocomplete="off"
6 placeholder="Location" />

Next, we’ll need to add the timezone attribute on to our generated <input> field in our directive’s compile function:

1 // ...
2 input.attr('type', tAttrs.type);
3 input.attr('ng-model', tAttrs.ngModel);
4 input.attr('timezone', tAttrs.timezone);
5 tEle.replaceWith(tplEl);
6 // ...

Last, but not least, we’ll simply save the user’s timezone when we save the topmost value for the user’s location in the autocomplete link function:

1 // ...
2 scope.reslist = data;
3 scope.ngModel = data[0].zmw;
4 scope.timezone = data[0].tz;
5 // ...

Back in the browser, when we type our city we’ll also save the timezone along with the new value of the city as well:

 [image: Timezone support]Timezone support

Finally, we’ll need to update the time and date in our MainCtrl to take into account the new timezone.

Previously, matching timezone names to their GMT offsets was a difficult task. The Mozilla and Chrome teams have implemented the toLocaleString with the new timeZone argument that enables us to remap a date according to it’s timezone. Since we are writing a Chrome app, we can depend upon this function being available for us to use in our app.

Back in our MainCtrl, we’ll create a new Date based off the saved timezone:

 1 .controller('MainCtrl',
 2 function($scope, $timeout, Weather, UserService) {
 3 $scope.date = {};
 4
 5 var updateTime = function() {
 6 $scope.date.tz = new Date(new Date().toLocaleString(
 7 "en-US", {timeZone: $scope.user.timezone}
 8));
 9 $timeout(updateTime, 1000);
10 }
11 // ...

Now, instead of using the $scope.date.raw in our view, we’ll switch over to using the $scope.date.tz. Now, the time will change along with the timezone.

 [image: Chicago]Chicago

 [image: Hawaii]Hawaii

Optimizing angular apps

Optimizing angular apps

Angular clearly is great for optimizing development time, but how does it stack up in terms of performance and what can we do to get it to work as fast as possible?

For most web applications, the native speed of Angular is fast enough and don’t need any special attention paid to optimizing it’s performance. When our applications get slow or show poor performance, we can then attack optimizing our Angular apps.

What to optimize

In order to know where to focus on the optimizing our app, we’ll need to understand what’s happening under the hood. As with any applications, we start by focusing on the cause of the issues.

Optimizing the $digest loop

The obvious place to start looking for performance issues is in the $digest loop. In short, Angular runs through a watch list that is responsible for keeping track of the live data bindings. Every single piece of live data that can possibly change on the page has a watch that’s applied to it.

 The demystifying angular chapter discusses the $watch list and the $digest loop in detail.

Each of these watches will cause the $digest loop to take more time to finish rendering as angular needs to keep track of the the value and check if it’s changed on each loop.

Focusing on limiting the number of unnecessary watches will gain us the biggest performance boosts. Additionally, keeping the bi-directional data comparisons simple will give us even more performance boosts as the browser can check these quickly.

In our apps, we should be mindful that the number of bidirectional data-bindings should not exceed more than 2000 data-bindings on the page for each $digest loop.

Sometimes we don’t even want the full $digest loop to run on our app. For instance, imagine we have a polling loop that checks our server several times a second. If we receive a websocket event that fires a full digest loop every message, we’ll have a pretty slow application.

 We recommend using websockets as they are more production-friendly and less prone to errors.

 1 app.factory('poller', function($rootScope, $http) {
 2 var pollForEvent = function(timeout) {
 3 $http.get('/events')
 4 .success(function(data) {
 5 var events = data.events;
 6 for (var i = 0; i < events.length; i++) {
 7 var event = events[i];
 8 if (service.handlers[event])
 9 for (handler in service.handlers[event])
10 $rootScope.$apply(function() {
11 handler.apply(event);
12 });
13 }
14 // Set the next timeout
15 setTimeout(pollForEvent, timeout);
16 });
17 };
18 // poll every half-second
19 setTimeout(function() { pollForEvents(500); });
20 var service = {
21 handlers: {},
22 on: function(evt, callback) {
23 if (!service.handlers[evt])
24 service.handlers[evt] = [];
25
26 service.handlers[evt].push(callback);
27 }
28 }
29 return service;
30 });

The major issue with this is that we’ll end up running the $rootScope.$apply() method for every single event that gets fired, which can add up to many $digest loops per-second.

Limiting the number of $digest loops per-second is a great way to start upgrade the performance of our app. We can throttle the events to happen only at a maximum of times we want per-second.

 1 // throttle function
 2 var throttle = function(fn, atMost, ctx) {
 3 var ctx = ctx || this;
 4 var atMost = atMost || 250; // milliseconds
 5 var last, defer, result;
 6 return function() {
 7 var now = new Date(),
 8 args = arguments;
 9 if (last && now < last + atMost) {
10 // Execute this later
11 clearTimeout(defer);
12 defer = setTimeout(function() {
13 last = now;
14 fn.apply(ctx, args);
15 }, atMost);
16 } else {
17 result = fn.apply(ctx, args);
18 }
19 return result;
20 }
21 }

This relatively ugly throttle() function will only trigger the function at most, once per atMost cycle.

 	
 [image: information]
 	
 The Underscore.js library has a much better production-ready, battle-tested version of this code.

To set our $digest loop to throttle using our throttle function, we can simply invoke it in the event loop:

 1 // ...
 2 for (var i = 0; i < events.length; i++) {
 3 var event = events[i];
 4 if (service.handlers[event])
 5 for (handler in service.handlers[event])
 6 throttle(function() {
 7 $rootScope.$apply(function() {
 8 handler.apply(event);
 9 });
10 }, 500);
11 }

Optimizing ng-repeat

One of the biggest sources of slow-down in Angular is the ng-repeat directive. For every single element that is placed by ng-repeat, there will be at least one data binding per entry in the list and this does not even count any of the bindings that we create inside of the list elements.

Let’s take a look at the performance of the following repeating list generated by ng-repeat:

 1
 2 <li ng-repeat="email in emails">
 3 <a ng-href="#/from/{{ email.sender }}">
 4 {{ email.sender }}
 5
 6 <a ng-href="#/email/{{ email.id }}">
 7 {{ email.subject }}
 8
 9
10

For every single email in our list, we’re going to have at the minimum 1 watch that’s generated by the ngRepeat directive (this watch monitors the list for changes). Since angular creates a $watch for every single ng directive, the above list has 4 + 1 watches per email. For a list of 100 emails, this already creates 500 watches and this is not even a complex listing for the entire page.

With this relatively short list, it’s obvious to see how the performance of the app can be greatly reduced with any significantly sized app. There are some relatively simple ways that we can speed up our application.

Optimizing the $digest call

It’s often also the case that we can determine when and to which scope(s) running the $digest loop will effect.

When this is true, we don’t have to invoke the entire $digest loop on the $rootScope using $scope.$apply(), which causes the cascade of every child $scope. Instead, we can directly call $scope.$digest().

Calling $scope.$digest() only runs the digest loop on the specific scope that called $digest() and all of it’s children.

Optimizing $watch functions

Since the $watch list expressions get executed every $digest loop, it’s important we keep the functionality tiny. The smaller and more focused the $watch expression, the more performant our application will be.

Avoiding deep comparisons, complex logic, and any loops in our $watch() functions will help speed up our applications.

For instance, we could set up a watch that watches an object. Imagine we have an Account object:

1 $scope.account = {
2 active: true,
3 userId: 123,
4 balance: 1000 // in cents
5 }

Presumably, we’d want to watch for anytime the balance changes and set the account to not active if the balance reaches zero. We can set up a $watch function that watches the account object and updates the account whenever the balance object changes:

1 $scope.$watch('user', function(newAccount) {
2 if (newAccount.balance <= 0) {
3 $scope.account.active = false
4 }
5 }, true);

The third argument in the $watch() function tells angular to deeply watch the object using deep comparison, checking every property with the angular.equals() function.

This will cause terrible performance. Not only is angular making a copy of the object, but it stores and saves it while it needs to walk through every property to check if any of them have changed it.

A tip for building our $watch functions is use them to keep track of variables that clearly affect the view. Anything that does not affect the view does not need a $watch function.

Sometimes it makes sense for us to remove watchers, specifically when a $watch function becomes irrelevant as the data will stay is static, we just want to expose it in our view the first time.

We can easily remove custom watchers from our view as the $watch function itself returns a function that enables us to remove the $watch function itself.

For instance, say we have a custom directive that is waiting for the resolution of a variable name:

1 <div data-my-directive name="customerName"></div>

Since the customerName isn’t likely to change once it’s set, we see we can optimize the use of this directive by removing the $watch function we’ve set up:

 1 .directive('myDirective', function($q) {
 2 return {
 3 // ...
 4 scope: {
 5 name: '='
 6 },
 7 link: function(scope, ele, attrs, ctrl) {
 8 var unWatch =
 9 scope.$watch(attrs.name, function(n, o) {
10 if (n != o) {
11 // Do something with the resolution of
12 // name and remove the watch
13 unWatch();
14 }
15 });
16 }
17 };
18 });

We can gain a lot of performance by removing any and all of the unnecessary watches that are in our application. This process can be particularly cumbersome when trying to remove every since watch from our application, especially when we’re trying to remove the default watchers set up by angular.

We can write our own directives to manage watchers, instead of working with the built-in directives provided by angular. Luckily, we don’t have to write these directives for ourselves as it’s already been written for us in a library called bindonce.

Bindonce

Bindonce is a drop-in module we can use in our apps that contain directives that hang on to a watch once and only once to give the ability to pass in asynchronous data.

The library works by creating new directives that we’ll attach to DOM elements where we don’t require live-updating. These directives will watch for the value to be filled and validated. Once the data is available, it will render it’s contents as well as it’s children’s contents and promptly remove the watcher.

Using the bindonce directive will create a single temporary watcher that is is removed after the data becomes available. If the data is already available on the scope, then the watcher is not created and the children are rendered.

Recall our previous example. We’ll create the same example with zero permanent watchers, using bindonce:

1
2 <li bindonce="email" ng-repeat="email in emails">
3 <a bo-href-i="#/from/{{ email.sender }}"
4 bo-text="email.sender">
5 <a bo-href-i="#/email/{{ email.id }}"
6 bo-text="email.subject">
7
8

To use bindonce, we’ll first need to grab the source. We can either get it directly from github at the project page: https://github.com/pasvaz/bindonce or through Bower by installing it:

1 bower install angular-bindonce

Once we have the source, we’ll need to reference it in our main view:

1 <script src="scripts/vendor/bindonce.js"></script>

Lastly, we’ll need to set it as a dependency for our application module:

1 angular.module('myApp', ['pasvaz.bindonce']);

Now, when we are dealing with static data, we can be sure we’re not using unnecessary watchers with the help of the bo-* tags.

There are many directives that the bindonce library gives us. As we can see from above, we’re using two custom directives.

 	
 [image: information]
 	
 Everytime we use any bo-* tag, we’ll need to ensure a part of it contains the bindonce directive. All of the children bo-* directives will watch for the data in this directive to resolve.

bo-if=”condition”

This is the same as calling ng-if, but without using extra watchers.

bo-show=”condition” / bo-hide=”condition”

This is the same as calling ng-show or ng-hide, but without using any extra watchers.

bo-text=”text”

This will evaluate the text and place it inside of the element. It’s similar to ng-bind.

bo-href=”url” / bo-href-i=”url”

Using bo-href does not allow for the “url” to require interpolation inside of the url, while bo-href-i enables the url to contain interpolation.

These two calls are functionally equivalent:

1 // bo-href does not allow for any interpolation
2 <a bo-href="'/users/' + User.id">√
3 // bo-href-i does allow interpolation
4 <a bo-href-i="'/users/{{ User.id }}'">√

bo-src=”url” / bo-src-i=”url”

The bo-src doesn’t allow for interpolation inside the url, while bo-src-i does.

These two calls are functionally equivalent:

1 // bo-href does not allow for any interpolation
2
3 // bo-href-i does allow interpolation
4

bo-alt=”text”

Similar to the bo-text, this will render text inside a DOM element and set the text as the alt attribute on the element.

bo-title=”title”

The bo-title directive will render text inside a DOM element and set the text as the title attribute on the element.

bo-id=”id”

This renders the “id” and sets it as the id attribute on the element.

bo-style=”style”

This renders the style as an expression with the same syntax as ng-style without using a watcher.

bo-value=”value”

This renders the value and sets it as the value attribute of the element.

bo-attr bo-attr-foo=”hello”

This renders the text ‘foo’ as a custom attribute in the DOM.

Bindonce is a great place to start optimizing any pages that use ng-repeat for mostly static data.

Auto-optimization of $watch functions

In the latest version of angular, it will automatically remove $watch functions that it finds to be of a constant value; if the expression resolves to a boolean or a static integer.

1 // These watchers will be automatically removed
2 // as $watches as Angular detects these as
3 // constant values
4 $scope.$watch('true', function() {});
5 $scope.$watch('2 + 2', function() {});

Optimizing filters

Every filter that is placed in the view will be called at a minimum of two times due to the nature of filters. The more we can keep these functions lightweight and optimized, the faster our applications will run.

Unchanging data

For this reason, it’s often a good idea to analyze where and why we are using a filter in our view. Generally, a good rule of thumb is that any filter that needs to be transformed for the view once can be moved out of the view.

That is to say rather than using the currency filter in the view, we can transform the model when we retrieve the data, rather than when we display it in the view where it will be run twice.

That is to say instead of using the filter, like so:

1 <!-- Using a filter -->
2 <div>{{ receipt.total_cost | currency }}</div>

We can transform the receipt.total_cost in our controller (or service) instead by using the $filter service:

1 .controller('ReceiptCtrl', function($scope, $filter) {
2 $scope.receipt.total_sum = 12345;
3 $scope.receipt.total_cost =
4 $filter('currency')($scope.receipt.total_sum);
5 });

Filtered data

We have other filters, such as live-search filters that limit the data in collections that are repeated using ng-repeat and through sorted orderBy filter uses. In these cases, the data doesn’t change, but how they are presented on-screen do.

Rather than calling these filters every single $digest loop, we can cache the sorted/filtered results so that we only calculate the sort and order once when necessary. This caching process is called memoizing.

 	
 [image: information]
 	
 Memoziation is an optimization technique used to speed up applications for function calls that have been previously called and whose results are not expected to changed for a given input.

In order to use memoization instead of a filter, we’ll need to either implement our own memoize() function or use one from a library, such as Underscore.js or lodash that include their own. Since the function itself is tiny, we’ve included the basic function definition from inside the lodash library:

 1 function memoize(fn, resolver) {
 2 var memoized = {
 3 var cache = memoized.cache,
 4 key = resolver ? resolver.apply(this, arguments) :
 5 +new Date() + '' + arguments[0];
 6 return hasOwnProperty.call(cache, key) ?
 7 cache[key] :
 8 (cache[key] = fn.apply(this, arguments));
 9 }
10 memoized.cache = {};
11 return memoized;
12 }

Essentially, the function itself takes two arguments, a function to cache and optionally a resolver function that will be called to determine the cache key for storing the result. The function will return a memoized version of the function.

When we use it, we’ll set the memoize function to be a function call on our scope object so we can call it from the view.

 1 angular.module('myApp', [])
 2 .controller('MainCtrl', function($scope, $filter) {
 3 $scope.getNames = memoize(function() {
 4 return $filter('orderBy')(
 5 $scope.names,
 6 $scope.orderBy, $scope.reverseList
 7);
 8 },
 9 function() {
10 // Resolver function returns a string that
11 // represents the cache key
12 return $scope.orderBy + '-' + $scope.reverseList;
13 });
14 });

When we call getNames() in the view, the orderBy $filter will run the first time. The second time it is called it will not be called as the cache will contain the sort key.

Sometimes we may want to clear the cache, such as whenever the dataset itself changes (adding or removing an update). Since the cache itself is held on the function object, we can clear the cache simply by setting it’s value to a new {} object.

1 $scope.getNames.cache = {};

Tips for optimizing page load

We can also optimize the amount of time it takes for our page to be rendered by the client-side browser. Of course, there is no silver bullet for determining the best mechanisms to load our pages the best for clients as a large portion of it depends upon server-side components, location, and hosting issues.

Minification

First, the easiest methods for optimizing perceived page-load time is minifying our code.

Minification is the process of removing all unnecessary characters from the source code, reducing the size of variables to as small as we can get them, stripping away comments and block delimiters, and more.

This sill reduce the time it takes for our files to be transferred over the network as it will reduce the size of the complete file.

We can minify our HTML, JavaScript, CSS, and even our images. The more compression we can get without sacrificing functionality will give our page the best user experience.

There are many tools that are available to help us with the process of minifying our code, available to us for free. We recommend using the uglify tool available through grunt. For more information about grunt, see the Grunt chapter.

Utilizing the $templateCache

When we deploy our app in production, we’ll want our app to load as fast as possible and be as responsive as possible. Requiring templates to load over XHR can lead to slow or sluggish feeling webapps. Instead of requiring our templates to be fetched via XHR, we can fake the template cache loading by wrapping it into a javascript file and simply shipping our javascript file along with the rest of the application.

For more information on how to efficiently wrap our templates, see the $templateCache tool grunt-angular-templates.

Debugging AngularJS

Debugging AngularJS

When we’re building large angular apps, it’s not uncommon that we’ll run into head-scratching issues that are seemingly difficult to uncover.

Debugging from the DOM

Although not always necessary nor a first step, we can get access to the angular properties that are attached to any DOM element. We can use these properties to peek into how the data is flowing in our application.

 	
 [image: information]
 	
 We should never rely on fetching element properties from a DOM element during the life-cycle of an application. The techniques are presented as techniques for debugging purposes.

To fetch these properties from the DOM, we need to find the DOM element we’re interested in. If we have the full jQuery library available, then we can use the jQuery selector syntax: $("selector").

We don’t need to rely on jQuery, however to target and fetch elements from the DOM. Instead, we can use the document.querySelector() method.

 	
 [image: information]
 	
 Note that the document.querySelector() is not available on all browsers and is generally good for non-complex element selections whereas Sizzle (the library jQuery uses) or jQuery support more complex selections.

We can retrieve the $rootScope from the DOM by selecting the element where the ngApp directive is placed and wrapping it in an angular element (using the angular.element() method).

With an angular element, we can call various methods to inspect our angular app from inside the DOM. To do this, we’ll need to select the element from the DOM. Using purely JavaScript and angular, we can this like so:

1 var rootEle = document.querySelector("html");
2 var ele = angular.element(rootEle);

With this element, we can fetch various parts of our application.

scope()

We can fetch the $scope from the element (or it’s parent) from using the scope() method on the element:

1 var scope = ele.scope();

Using the scope, we can inspect any elements that are on it, such as custom variables that we set on the scope in our controllers as well as elements looking into it’s $id, it’s $parent object, the $$watchers that are set on it and even manually walk up the scope chain.

controller()

We can fetch the current element’s controller (or it’s parent) by using the controller() method:

1 var ctrl = ele.controller();
2 // or
3 var ctrl = ele.controller('ngModel');

injector()

We can fetch the current injector of the element (or the containing element) by using the injector() method:

1 var injector = ele.injector();

With this injector, we can then then instantiate any angular object inside our app, such as services, other controllers, or any other object inside of our angular app.

inheritedData()

We can fetch the data associated with an element’s $scope simply by using the inheritedData() method on the element:

1 ele.inheritedData();

This inheritedData() method is how angular finds data up the scope chain as it walks up the DOM until it’s found a particular value or until the top-most parent has been reached.

 	
 [image: information]
 	
 If you’re using Chrome, we can use a shortcut with the developer tools. Simply find the element you’re interested in, right click on it in the browser, and select inspect element. The element itself is stored as the $0 variable and we can fetch the angular-ized element by calling: angular.element($0).

debugger

Google’s Chrome has it’s own debugger tool to create a breakpoint in our code. The debugger statement will cause the browser to freeze during execution that allows us to examine the running code from inside the actual application and at the point of execution inside the browser.

To use the debugger, we can simply add the it inside the context of our application code:

 1 angular.module('myApp')
 2 .factory('SessionService', function($q, $http) {
 3 var service = {
 4 user_id: null,
 5 getCurrentUser: function() {
 6 debugger; // Set the debugger inside
 7 // this function
 8 return service.user_id;
 9 }
10 }
11
12 return service;
13 });

Inside this service, we’ll call the debugger; method that will effectively freeze our application when it encounters this call.

As long as the Chrome development tools are open in our browser, we can use console.log() and other javascript commands at the point where this application code executes.

When we’re done debugging the application code, we’ll need to make sure we remove this line as it will freeze the browser, even in production.

Angular Batarang

Angular Batarang is a Chrome extension developed by the Angular team at Google and integrates very nicely as a debugging tool for Angular apps.

 [image: Batarang chrome extension]Batarang chrome extension

Installing batarang

To install batarang, we’ll simply need to download the application from the web store or from the github repo: https://github.com/angular/angularjs-batarang.

Once that’s set, we can start it up by navigating to our developer tools and clicking enable to enable Batarang to start collecting debugging information about our page.

Batarang allows us to look at scopes, performance, dependencies and other key metrics in Angular apps.

Inspecting the models

After we’ve started up Batarang, the page will reload and we’ll notice that we have the panel that enables us to select different scopes in our page.

We can select a scope by clicking on the + button, hovering over and clicking on an element we’re interested in.

Once we select a scope using the inspector, we can look at all the different properties on our scope element and their current values.

 [image: Model inspector]Model inspector

Inspecting performance

We can also peek into the performance of our application by using the performance section of Batarang.

In this panel, we get a peek into the watch list of the application at the different scopes as well as the amount of time that each expression takes, both in absolute time as well as percentage of the overall application time.

 [image: Performance inspector]Performance inspector

Inspecting the dependency graph

One very nice feature of the Batarang tool is it’s ability to visualize the dependency graph in-line. We can look at the dependencies of our application and view the different states at what they depend upon as well as track elements that aren’t dependencies of the application at all.

 [image: Dependency graph]Dependency graph

Visualizing the app

Batarang allows us to look deep into the application on the page itself. Using the Options panel, we can look at:

Applications

The different applications that are on a single page (the ngApp directive uses)

bindings

The bindings that are set in the view, where we use either ng-bind or {{ }} elements.

scopes

The scopes in the view that we can target and inspect deeper.

The options panel also allows us view the angular version of the app as well as the CDN usage or not of Angular in the app.

 [image: Options]Options

All in all, the Batarang tools gives us a lot of power when diving into how our Angular apps work in real-time.

Next steps

Next steps

Now that you know AngularJS, we’ll discuss what it will take and what tools you can use to move into a production environment.

jqLite and jQuery

Although angular encourages breaking away from relying on the jQuery library, we can use it if we need to within our app by ensuring that we load it before the DOMContentLoaded event has been fired or we manually bootstrap our app.

Angular itself includes a compatible library called jqLite.

The angular.element() method that we’ve been using throughout this book returns a jqLite object, which is a subset of the jQuery library that allows Angular to manipulate the DOM in a cross-browser compatible way.

The jqLite library does not attempt to cover the entire jQuery library methods as it is intended on being lite and cover only those methods that are needed by Angular.

The library itself covers the following jQuery methods:

addClass()

Adds the specified class(es) to the element.

after()

Insert content to the end of the element

append()

Insert content to the end of the element.

attr()

Get or set the value of the attribute for the element.

bind() / on()

Attach an event handler function for one or more events of the selected element.

children()

Get the children of the element.

clone()

Create a deep copy of element.

contents()

Get the children of each element in the set including text and comment nodes.

css()

Get or set the value of a style property for the element.

data()

Store or return the value of arbitrary data associated with the element.

eq()

Get the element at the specified index.

find()

Get the descendants of the element filtered by tagname only.

hasClass()

Determine if the element itself is assigned a given class.

html()

Get or set the HTML contents of the element.

next()

Get the immediately following sibling of the element.

off() / unbind()

Remove an event handler by name.

parent()

Get the parent of the element.

prepend()

Insert content to the beginning of the element.

prop()

Get or set the value of a property for the element.

ready()

Specify a function to execute when the DOM is fully loaded.

remove()

Remove the element from the DOM.

removeAttr()

Remove an attribute from the element.

removeClass()

Remove a single, multiple, or all classes from the element.

removeData()

Remove the previously stored data from the element.

replaceWith()

Replace the element with the provided new content.

text()

Get or set the combined text contents of the element.

toggleClass()

Add or remove one or multiple classes from the element.

triggerHandler()

Execute all handlers attached to an element for an event.

val()

Get or set the current value of the element.

wrap()

Wrap an HTML structure around the element.

Essential tools to know about

The AngularJS community is fantastic and there are some great tools that have been written to support AngularJS development. We’ll range from discussing build tools and frameworks, to live interaction tools.

Grunt

Grunt is a pure javascript task runner. It will save you tons of time in developing javascript applications, both server-side and client-side. It will make repetitive tasks disappear and handle running them for you automatically.

The javascript community has jumped all over the Grunt tool and created hundreds of plugins. If a plugin you need or want has not been developed, the Grunt tool has made it very easy to create your own.

Installation

First, we’ll have to make sure you have NodeJS installed. NodeJS is a platform built on Chrome’s JavaScript runtime and allows you to write JavaScript as a server-side language.

To install grunt, we’ll use the built-in npm tool that comes with NodeJS:

1 $ npm install -g grunt-cli

 	
 [image: information]
 	
 Passing the -g flag will make the grunt command available in any directory on your computer.

With grunt installed, you’ll also need to have a Gruntfile alongside your app to configure how and what grunt runs. In order to do anything useful with Grunt, let’s create a Gruntfile.js in our project.

First things first, we’ll have to create a package.json file that will tell Node what to install as dependencies.

 	
 [image: information]
 	
 Just as AngularJS handles dependencies, NodeJS has a clever method of dependency management. The package.json file will be your friend as you write more NodeJS apps.

To make the default package.json file, you can either run a generator or copy and paste from the default package.json. Since the npm init command is built-in, let’s use that:

1 $ npm init

This command will as you a series of questions, like what is the name of your new app, what version, and a few more. You can use all of the defaults it will set for you, although it’s probably a good idea to set the name of your app.

Once this command completes, it’ll create a package.json file that looks something like:

 1 {
 2 "name": "myapp",
 3 "version": "0.0.0",
 4 "description": "Your myapp description",
 5 "main": "index.js",
 6 "scripts": {
 7 "test": "echo \"Error: no test specified\" && exit 1"
 8 },
 9 "author": "Your name",
10 "license": "MIT"
11 }

Now, we can install the basic grunt comamnd in our package.json file by using the npm command again:

1 $ npm install grunt --save-dev

 	
 [image: information]
 	
 The --save-dev flag will save the grunt as a dependency for development. If you want to save a dependency for runtime, you can use the --save flag.

A common use of grunt is to minify our javascript files so we send the smallest file to the browser. This is particularly useful so your app loads the quickest it can; especially on mobile devices.

We’ll install the uglify plugin to handle this for us.

1 $ npm install grunt-contrib-uglify --save-dev

Great, now we can configure grunt using the Gruntfile. To configure Grunt, load your Gruntfile.js in your text editor and add the following:

1 module.exports = function(grunt) {
2 // Configuration
3 grunt.initConfig({
4 pkg: grunt.file.readJSON('package.json')
5 });
6 // Load plugins
7 // Default task(s).

};

To setup a configuration, we’ll need to tell grunt to load the Npm tasks of all the plugins we’ll want to use. Since we’re loading the uglify tasks, we’ll tell grunt to load our grunt-contrib-uglify plugin tasks:

1 grunt.loadNpmTasks('grunt-contrib-uglify');

To configure uglify, we can place a configure block inside of the initConfig object with the key of uglify (this is dependent upon the plugin you’ll use). In this case, we’ll make a minimal update to the configuration where we’ll only set the src and the dest locations.

1 grunt.initConfig({
2 pkg: grunt.file.readJSON('package.json'),
3 uglify: {
4 build: {
5 src: 'src/<%= pkg.name %>.js',
6 dest: 'build/<%= pkg.name %>.min.js'
7 }
8 }
9 });

All of the available options for block of configuration code for the grunt-contrib-uglify module can be found in the README for the project (available here).

 	
 [image: information]
 	
 Note, that when using grunt modules, most often the configuration documentation will be available in the project’s README file or otherwise will point to the available configuration options.

With that set, grunt will look for the javascript file named the whatever our package.json name is set to in the src/ directory. It will then run the uglify task on this file.

To actually tell Grunt to run the task, you can run the task uglify:

1 $ grunt uglify

You can also configure grunt to run multiple tasks in one go by declaring a task with multiple subtasks:

1 grunt.initConfig({
2 // config
3 });
4 grunt.registerTask('default', ['uglify']);

Now you can run grunt default and all of the tasks you’ve defined in the array will run. The default task has special meaning in Grunt. With the default task configured like so, you can just run the grunt command and all of those tasks will run.

You might be wondering why does this even matter. This example, we’ve only setup one task to run, but if you are using coffeescript, want to package all of your angular templates into a single file, package your less css files, etc. etc. grunt will handle that for you.

Finally, one of the most useful features of grunt is it’s ability to watch the filesystem for file changes and execute commands on the file changes.

To setup watch, we’ll do the same two steps as we did above. First, install the grunt-contrib-watch npm package:

1 $ npm install grunt-contrib-watch --save-dev

Next, setup a config block in the initConfig object:

 1 grunt.initConfig({
 2 pkg: grunt.file.readJSON('package.json'),
 3 //
 4 watch: {
 5 js: {
 6 files: 'src/**/*.js',
 7 tasks: ['uglify']
 8 }
 9 }
10 });

Now we can run grunt watch and grunt will start watching all of the javascript files in your src/ directory. when any of them change, it will run the uglify task.

grunt-angular-templates

By default, angular will fetch templates over XHR when it cannot find them locally in it’s $templateCache. When the XHR request is slow or our template is large, this can seriously impede the experience of our app for our users.

One way we can avoid this delay is by “faking” the $templateCache in thinking that it has already been filled up, so angular doesn’t have to load the templates from afar. We can do this manually in JavaScript like so:

1 angular.module('myApp', [])
2 .run(function($templateCache) {
3 $templateCache.put('home.html',
4 'This is the home template');
5 });

Now, when angular needs to fetch the template named ‘home.html’, it will find it in the $templateCache nd not need to fetch it from the server.

This is quite cumbersome to do manually if we want to package our app for our servers. Luckily, the grunt-angular-templates grunt task will do this for us.

Installation

First, we need to install the grunt task. We’ll do this with npm as follows:

1 $ npm install --save-dev grunt-angular-templates

 	
 [image: information]
 	
 We’ll use the --save-dev task to store the grunt task in our package.json file and is good practice to do so that the next person has all the dependencies that we’re using. If we’re not using a package.json file, then we can ignore this flag, but it won’t do any harm to keep it in also. npm will simply output a message warning us that we’re not using a package.json.

Next, we’ll need to reference this new task in our Gruntfile.js file, like so:

1 grunt.loadTasks('grunt-angular-templates');

Now, we can safely use this task in our Grunt tasks.

Usage

The task itself will compile a JavaScript file that we will need to load inside of our index.html. For instance, if we load tell the task to generate the templates.js file, we’ll need to load it inside of our index.html:

1 <script src="template.js"></script>

First off, like any other Grunt task we’ll need to configure it. The configuration template key is: ngtemplates. Inside of this ngtemplates configuration block, we’ll set a subtask that will become the name of the angular module we’re loading.

For example:

1 ngtemplates: {
2 myApp: {}
3 }

This will generate the output of our template.js file as:

1 angular.module('myApp')
2 .run(['$templateCache', function($templateCache) {
3 $templateCache.put('home.html', ...);
4 }])

Notice that the name of the subtask myApp is the same as the angular module that the $templateCache is referenced.

Inside of this subtask is where we’ll set our options.

Available options

bootstrap

By default, angular-grunt-templates wraps the function($templateCache) {} inside of the angular.module('myApp').run(['$templateCache', ___]); We can change this if we’re using CommonJS or RequireJS with the bootstrap option:

1 // ...
2 bootstrap: function(module, script) {
3 return 'module.exports[module]= ' + script + ';';
4 }

concat

This is the name of the concat target to append our compiled template path.

htmlmin

Just as we can minimize our css and javascript files, we can also minimize our html using a tool called (unsurprisingly) htmlmin. grunt-angular-templates plays nicely with htmlmin and even allows us to minimize the html inside of our templates as well.

We can set options for htmlmin inside of our configuration, like so:

 1 ngtemplates: {
 2 myApp: {
 3 options: {
 4 htmlmin: {
 5 collapseBooleanAttributes: true,
 6 collapseWhitespace: true,
 7 removeAttributeQuotes: true,
 8 removeEmptyAttributes: true,
 9 removeRedundantAttributes: true
10 removeScriptTypeAttributes: true,
11 removeStyleLinkTypeAttributes: true
12 }
13 }
14 }
15 }

module

The name of the angular.module that the template cache will be registered with will be the name of the subtask that we are working with the options unless we set it in the options as module.

1 ngtemplates: {
2 myApp: {
3 options: {
4 module: 'myBestApp'
5 }
6 }
7 }

This will result in the templates being set as:

1 angular.module('myBestApp')
2 .run(['$templateCache',
3 function($templateCache) {
4 // ...
5 }

prefix

We can set a prefix for all of our template URLS, so for instance if we want to use absolute URLS where our templates are accessed from an absolute location in a different directory, we’d set our prefix to look like:

1 ngtemplates: {
2 app: {
3 options: {
4 prefix: '/public'
5 }
6 }
7 }

source

The source option can be set to a function that gets called before the rest of the templates are compiled, after the source has been minified so that we can customize the template source output.

The function gets called with the options:

	source - the minified template source

 	path - the path to the template file

 	options - the task options object

standalone

This boolean options flag tells the grunt task if the templates are a part of an existing module, such as myApp or if they are standalone. Mostly, this option should be set to false (as it is by default).

url

Setting the url option will override the template’s $templateCache URL. Mostly, this option is here for special circumstances as we’ll set the cwd and the src, which will make the templates available both through XHR and through the $templateCache.

Usage

The authors of grunt-angular-templates have given us a lot of options for how we can use this task.

concat

The easiest way to use the task is inside of the concat task. This will place the responsibility of the location of the task into the minified concat task.

1 concat: {
2 app: {
3 src: ['*.js','<%= ngtemplates.app.dest %>'],
4 dest: ['app.js']
5 }
6 }

Now our templates will be attached at the end of our app.js file.

usemin

When using grunt-usemin, a task that minifies and combines javascript inline request files. For instance:

1 <!-- build:js module.js -->
2 <script src="scripts/app.js"></script>
3 <script src="scripts/controllers.js"></script>
4 <!-- endbuild -->

The name of the file that will be minified is module.js. We can use this as a target to attach our templates.

1 ngtemplates: {
2 app: {
3 src: 'templates/*.html',
4 dest: 'template.js',
5 options: {
6 concat: 'module.js'
7 }
8 }
9 }

dest

Lastly, we can normally generate the templates.js just by specifying a destination, rather than appending it to another file by simply assigning a dest: key.

1 ngtemplates: {
2 app: {
3 src: 'templates/*.html',
4 dest: 'template.js'
5 }
6 }

Lineman

The Lineman tool is a a build-tool that allows you to focus on building fat-client (or client-side) web apps. It mixes an incredible amount of functionality to make client-side webapp development fun and easy.

Lineman is built and maintained by the community to keep the front-end webapp development productive in a maintainable, manageable manner.

We’ve been developing our client-side application in a single index.html file that we’ve been loading through our browser for most of this book. Lineman takes a different approach and serves the application through a local server.

By serving files through a local server, Lineman can offer unique functionality we can’t get with static files. It will:

	Compile and serve Coffeescript files as javascript upon saving a file

 	Run Less and Sass preprocessors and serve the generated CSS

 	Provides backend stubbing tools so you can develop with or without a backend server

 	Pre-compile your javascript templates

 	Proxy XHR requests to your backend server

 	Make testing incredibly easy and fun

Lineman explicitly does not deal with any backend webserver (although it does provide a way for us to stub backend calls as we’ll see). It’s focus is on building AngularJS apps that can be compiled, minified, and deployed as a static webapp.

To use lineman, we’ll need to make sure we have nodejs installed which comes prepackaged with the npm tool. To installed lineman itself, we’ll install it with npm and we’ll install it globally.

1 $ npm install -g lineman

Although we’ll be using lineman itself to run our project, we won’t use the packaged generator. Instead we’ll use the AngularJS template created by David Mosher.

1 $ git clone https://github.com/davemo/lineman-angular-template my-app

Once this has been cloned (using git), we’ll use npm again to install the dependencies that lineman needs to operate:

1 $ cd my-app && npm install -d

After the dependencies have been installed, we can start working on our app. We’ll work with the workflow of editing our app while running both the tests as well as the server.

To run the app, start the lineman tool in the my-app directory.

1 $ lineman run

Now, we’ll have our app running in the browser at http://localhost:8000.

 [image: Running lineman]Running lineman

As you can see, the angular template has a few templates with it. You’ll also notice the directory structure has a bunch of directories:

	app - contains the app files
 	css - our css files (less or css files)

 	img - our img files

 	js - our angular app

 	pages - the html templates to be compiled

 	templates - the angular templates

 	config - the lineman-specific configuration files

 	doc - a directory for documentation for the app

 	dist - a generated directory where our production app is built

 	generated - a generated directory for the lineman run app

 	spec - all specs that are not end-to-end specs

 	spec-e2e - our protractor specs live here

 	tasks - any custom lineman tasks should go here

 	vendor - contains any vendor css, javascript, and image files

 	Gruntfile.js - the gruntfile that powers lineman

 	package.json - the app customization, defines dependencies and other metadata

Lineman provides an efficient structure for editing webapps quickly and confidently.

Bower

Bower is a package manager for front-end files on the web. Similar to how npm is a package manager for node modules, which allows developers to write shareable modules for the server bower offers similar functionality for web components.

It offers a solution to the dependency problem through a generic, un-opinionated, and easy-to-use interface. It runs over git and is package agnostic. It also supports any type of transport, like requireJS, AMD, and others.

Installation

Installation is simple: we’ll use the npm package manager to install bower:

1 $ npm install -g bower

 	
 [image: information]
 	
 bower depends upon git, node, and npm.

From here, we can verify that it’s working by typing the help command:

1 $ bower help

If output is displayed to the screen, then we are good to go.

 [image: Bower help screen]Bower help screen

Bower overview

 	
 [image: information]
 	
 Although we’ll cover a brief overview, we encourage more exploration at the bower homepage: bower.io.

With our webapp, we’re likely going to want to share the source with other developers or deploy to other development machines. Similar to the package.json file for npm, we can use a bower.json file to store our front-end dependencies.

To get started with a bower.json, we can use the init command provided by bower. We should execute this in the root of our project directory:

1 $ bower init

This command will launch a setup wizard that will ask us a few questions about our new package. When it’s done, it will generate a new bower.json file in our current directory.

Configuring bower

Bower comes with sane defaults, but it is highly configuration. We can configure what directory packages are installed, which registry to use to install components.

 	
 [image: tip]
 	
 Bower has great documentation on configuration available here. We recommend you check them out for more detailed configuration.

Although in-depth bower configuration is outside of the scope of this chapter, we’ll look at the two most commonly modified configuration items (based upon our own experience).

To configure bower, we can edit the .bowerrc file, pass config arguments, or set environment variables. The .bowerrc file can be located in several places:

	the current working directory of the project

 	in any subfolder in the directory tree

 	in the current user’s home folder

 	in the global bower folder

The .bowerrc file contains a JSON object for configuration. For example, to change the color configuration, the .bowerrc file would contain:

1 {
2 "color": false
3 }

For the purposes of simplicity, we like to keep the .bowerrc file in the root of the project directory. If it doesn’t already exist, create it in the root of the project directory:

1 $ echo "{}" > .bowerrc

cwd

The cwd configuration variable is the directory from which bower should run. All other paths should relate directly to this directory.

1 {
2 "cwd": "app"
3 }

directory

The directory configuration variable is the path in which installed components should be saved. This defaults to bower_components. Depending on how we are creating an app, we’ll change this to suit a different directory structure:

1 {
2 "directory": "app/components"
3 }

Searching for packages

To find a package for installation, bower includes a search command to search through the index of it’s registry:

1 ## Searching for bootstrap-sass
2 $ bower search bootstrap-sass

Installing packages

Installing packages is equally as easy. If we have an existing bower.json file, we can simply run the install command. This will pull-down and install the front-end dependencies in the bower directory.

1 $ bower install

We can install a package locally by explicitly calling install on the file. It’s possible to install a specific version of the package and even set an alias for the package install.

1 # Install a local or
2 # default remote version of a package
3 $ bower install <package>
4 # Install a specific version of a package
5 $ bower install <package>#<version>
6 # Alias install a package
7 $ bower install name=<package>#<version>
8 # For instance
9 $ bower install bootstrap=bootstrap-sass

The bower.json file stores several types of dependencies, either dependencies needed by the runtime (such as angular or jquery) or dependencies needed in the development process (like karma or bootstrap-sass).

1 # Install a runtime dependency
2 $ bower install angular-route --save
3 # Install a dev dependency
4 $ bower install bootstrap-sass --save-dev

If we dump out the contents of our bower.json, we’ll see that it is updated with our new dependencies:

 1 $ cat bower.json
 2 {
 3 "name": "myApp",
 4 "version": "0.0.1",
 5 "authors": [
 6 "Ari Lerner <ari@fullstack.io>"
 7],
 8 "license": "MIT",
 9 "dependencies": {
10 "angular-route": "~1.2.2"
11 },
12 "devDependencies": {
13 "bootstrap-sass": "~3.0.0"
14 }
15 }

Using packages

Now that our packages are installed, we can include the packages just like any other script in our local directory: using a script tag in the HTML source.

1 <script
2 src="/bower_components/angular/angular.js">
3 </script>

Removing packages

It’s also possible to remove packages through bower. We can either manually delete the files in our bower directory, or we can run the uninstall command.

The uninstall command allows us to use the --save and --save-dev flags to reflect the changes in the bower.json file.

1 # Remove a dependency
2 $ bower uninstall --save-dev angular-route
3 # Remove a devDependency
4 $ bower uninstall --save-dev bootstrap-sass

Yeoman

Yeoman is a collection of the previous tools we’ve been discussing in this chapter:

	Yeoman

 	Grunt

 	Bower

Yeoman itself is a scaffolding tool and helps us build new applications by setting up our grunt configuration, building our our application workspace, and managing our workflow, regardless of the type of application we are building.

There are just under 300 generators written by the community available as of the time of this writing to set up many projects of all sorts of different types from Angular sites, to Backbone.js and even Python flask projects.

Grunt is set up as the build tool and bower is set up for handling dependency management.

Installation

Installation is for yeoman is simple. First, we’ll need to make sure we have node.js and git installed. Some generators require ruby and compass to be installed.

Once we have the dependencies, we can install yeoman itself using npm:

1 $ npm install -g yo

Installing yeoman will install Grunt and Bower automatically.

Next, in order to use it, we’ll need to install a generator as yeoman is useless without a generator.

We’ll install the angular generator:

1 $ npm install -g generator-angular

 	
 [image: information]
 	
 To search all the available community generators, we can check out the web interface at http://yeoman.io/community-generators.html.

Usage

Using the yeoman workflow is easy as well. First and foremost, we’ll want to create a directory to work in. Yeoman does not create a working directory for us, rather it assumes the directory we’re working in is the directory that houses our app.

1 $ mkdir myapp && cd $_

Inside of this directory, we’ll run the yeoman generator which will scaffold our project. In this example, we’re using the angular generator generator-angular:

1 $ yo angular

 [image: Yeoman install]Yeoman install

We’ll be asked a few questions and it will then create our application. In these steps, it will call npm install as well as bower install for us to ensure we have all the dependencies we expect so we can get developing immediately.

We’ll use the grunt command to kick off our development process.

1 $ grunt server

 [image: Running yeoman]Running yeoman

The grunt server command will start a local server that serves our app locally. It uses livereload to automatically reload the browser when we save a file in our workspace.

The directory that is built for us has an opinionated structure that enforces an easily extensible design for our angular apps.

 [image: Yeoman generated structure]Yeoman generated structure

Yeoman creates a directory structure that builds both an app/ and a test/ directory. Inside the app, we’ll build our angular app as well as house our views, our styles and other various parts of our application.

When we want to create a controller, we’ll need to add a file to the controllers directory with a descriptive name. Then we’ll need to ensure that we include it in our index.html as a file to load.

For instance, adding a dashboard controller, we’ll app/scripts/controllers/dashboard.js and create our DashboardCtrl definition:

1 'use strict';
2
3 // in app/scripts/controllers/dashboard.js
4 angular.module('myappApp')
5 .controller('DashboardCtrl', function($scope) {
6 });

Now, to include this controller we’ll tell our application to load this file in our index.html. We’ll want to make sure we include it inside the build comments in our app so that our htmlmin task includes it when it’s minifying our HTML.

1 <!-- build:js({.tmp,app}) scripts/scripts.js -->
2 <script src="scripts/app.js"></script>
3 <script src="scripts/controllers/main.js">
4 </script>
5 <script src="scripts/controllers/dashboard.js">
6 </script>
7 <!-- endbuild -->

Now we can use the controller in our app. This same process will work for any type of angular component that we’ll use in our app, services, filters, directives, etc.

If we break our app into multiple components (highly recommended) as dependencies of our app, we’ll need to ensure we include those before our app.js file above. For instance, if we follow the multiple-module pattern where we generate a new module for each component:

1 // in app/scripts/services/api.js
2 angular.module('myApp.services', [])
3 .factory('ApiService', function() {
4 return {};
5 });

And set these modules as dependencies for our app:

1 // in app.js
2 angular.module('myApp', ['myApp.services']);

We’ll need to include these services before we include app.js in our HTML.

Alternatively, the Angular generator itself comes with a bunch of helpful generators that make the process of building an angular app a cinch.

Create a route

To create a route, which includes a controller and the corresponding test for the controller, includes the <script> tag in the HTML, and creates a view for the route, run the following in our terminal:

1 $ yo angular:route home

 [image: Create a new route]Create a new route

Create a controller

To create a simple controller as well as the corresponding test, we can use the generator in the terminal:

1 $ yo angular:controller user

Create a custom directive

To create a directive and the corresponding test, we can create a directive using the following command:

1 $ yo angular:directive tabPanel

 [image: Create a directive]Create a directive

Create a custom filter

We can also create a custom filter in our app and the corresponding test, we can use the following generator:

1 $ yo angular:filter capitalize

Create a view

To generate a simple view, we can use the angular generator command:

1 $ yo angular:view dashboard

Create a service

It’s possible to use the generator to create a service as well. The following will create a service as well as the corresponding tests in the different formats that we are able to create a service.

1 $ yo angular:service api
2 $ yo angular:factory api
3 $ yo angular:provider api
4 $ yo angular:value api
5 $ yo angular:constant api

 [image: Create a provider]Create a provider

Create a decorator

The angular generator also comes with the ability to create a decorator over other services simply. Run this in our terminal:

1 $ yo angular:decorator api

Configuring the angular generator

With any of the previous generators (including the main generator), we can pass options to configure our scripts in a custom manner.

Coffeescript

If we want to generate coffeescript files instead of javascript files, we can easily do this by passing the --coffee option:

1 $ yo angular:controller user --coffee

Minification safe

Although not strictly necessary as our yeoman generator includes ngMin, we can tell the generator to add dependency injection annotations in our generated file using the --minsafe flag:

1 $ yo angular:controller user --minsafe

Skipping index

By default, all of the previous generators add the appropriate files to be loaded in the index.html. We can tell the generator not to include the scripts in the index.html.

 	
 [image: information]
 	
 We may want to skip adding a file to the index page as we may be building a 3rd party plugin.

1 $ yo angular:factory session --skip-add

Testing our app

One of the nicest features of the yeoman angular generator is it’s ability to allow us to seamlessly test our application as we are developing it.

The generator comes packaged with a test command that will run whenever we save a file in our app. This makes the process of testing easily translatable into our workflow.

To run our tests without watching our files, in otherwords to run it once, we can use the command:

1 $ grunt test

This will run once and quit. We recommend making two changes to our workflow to introduce automated testing in our app.

First, we’ll open the Gruntfile.js at the root of the application and we’ll find the karma task. Change the option from singleRun: true to false:

 1 // ...
 2]
 3 },
 4 karma: {
 5 unit: {
 6 configFile: 'karma.conf.js',
 7 singleRun: false // CHANGE THIS TO FALSE
 8 }
 9 },
10 cdnify: {
11 // ...

Second, open the karma.conf.js file and change the option of autoWatch from false to true.

Now, when we run grunt test, rather than running once and quitting, the task will stay open and watch our files. Once we change a file and save it, then the tests will re-run.

Packaging our app

After we are done building our application, we’ll want to set up a distribution for our app. Creating a distribution of our app includes minifying all of the javascripts, our HTML, packaging the views, preprocessing the CSS, etc.

To run the build task, we can simply run the grunt build command:

1 $ grunt build

This will take a few minutes to run the entire generator. When it has completed, we’ll end up with a dist/ folder in the root of our app. This will contain all of the files suitable for production deployment.

We can upload this to our server as-is or include it in deployment with our server and let our application run to the masses.

Packaging our templates

One method that we can use to make our apps appear incredibly fast and not depend upon servers to deliver our templates is to turn our template files into a “javascript” file.

Using the angular templateCache, we’ll include our templates in a javascript file. For instance, instead of telling angular to fetch the HTML using XHR as HTML:

1 <div class="hero-unit">
2 <h1>'Allo, 'Allo!</h1>
3 <p>You now have</p>
4
5 <li ng-repeat="thing in awesomeThings">{{thing}}
6
7 <p>installed.</p>
8 <h3>Enjoy coding! - Yeoman</h3>
9 </div>

We can package them up into a javascript file and let the javascript stand alone like so:

 1 angular.module('myApp')
 2 .run(['$templateCache', function($templateCache) {
 3 $templateCache.put('views/main.html',
 4 "<div class=\"hero-unit\">\n" +
 5 " <h1>'Allo, 'Allo!</h1>\n" +
 6 " <p>You now have</p>\n" +
 7 " \n" +
 8 " <li ng-repeat=\"thing in awesomeThings\">{{thing}}\n" +
 9 " \n" +
10 " <p>installed.</p>\n" +
11 " <h3>Enjoy coding! - Yeoman</h3>\n" +
12 "</div>\n"
13);
14 }]);

To set this up, we’ll modify our Gruntfile.js to include a new task using the grunt-angular-templates npm package.

First, install the package:

1 $ npm install --save-dev grunt-angular-templates

Next, we’ll modify our Gruntfile.js to include the ngtemplates task.

 1 // ...
 2 }
 3 },
 4 ngtemplates: {
 5 myappApp: {
 6 cwd: '<%= yeoman.app %>',
 7 src: 'views/**/*.html',
 8 dest: '<%= yeoman.app %>/scripts/templates.js'
 9 }
10 },
11 // Put files not handled in other tasks here
12 copy: {
13 // ...

This will simply create a new file in our app directory that will contain the template files loaded as javascript.

We’ll need to make sure that this task is run in the build process. Luckily, it’s easy to add a task to the build process task. Find the line: grunt.registerTask('build', [and make sure we’ve added ngTemplates into the array of tasks after the concat task:

 1 grunt.registerTask('build', [
 2 // ...
 3 'concat',
 4 // ...
 5 'cssmin',
 6 'ngtemplates',
 7 'uglify',
 8 'rev',
 9 'usemin'
10]);

Lastly, we’ll need to ensure that we include the templates.js file in our app/index.html file after we include the scripts/app.js file:

1 <!-- build:js({.tmp,app}) scripts/scripts.js -->
2 <script src="scripts/app.js"></script>
3 <script src="scripts/controllers/main.js"></script>
4 <script src="scripts/templates.js"></script>
5 <!-- endbuild -->

Now, when we build our app, our templates will come packaged along with the rest of the application.

Note that when we’re developing our application, if the template isn’t found in the cache, it will load from the server automatically, so we can safely delete the app/scripts/template.js file if we need to throughout our development process.

If this file exists, then the views that it caches won’t be reloaded as it will think it has the template available.

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_tip.png

OEBPS/images/localization----en.png
® O 6 Localize me

Hello Ari
1 book

Change to Spanish

OEBPS/images/leanpub_exercise.png

OEBPS/images/localization----poedit_open.png
0086 Open

Open catalog template

CERETS s (@

oo :

Il
=l

FAVORITES

[C] Dropbox
E Al My Files

Applications
[Desktop
[Documents

0 Downloads
H Movies
J7 Music
[E Pictures
(L] Development
L] Google Drive
[T Creative Cloud Files

Caneel | (g]

OEBPS/images/localization----poedit_form.png
Poedit

| Translation

Source text:

Translation:

Project name and version:

Team:
Team's email address:

Language:

Charset

Source code charset:

Plural Forms

|ES

: | UTF-8 (recommended) | ']

| 2
= Inplurals=2; plural=(n > 1) I
Learn about plural forms

ok Cancel |

translators:

OEBPS/images/localization----poedit_translate.png
®@00 [] es.po

Source text | Translation | |
{{ count }} book {{ count }} libro
Helle {{ user.name }} Hola {{ user.name }}
Source text: Notes for translators:
Singular {{ count }} book
Plural: {{ count }} books
Translation:

(DI ACK RSN Form 1 (e.g. "2")

{f count }} libro

50 % translated, 2 strings (1 fuzzy)

OEBPS/images/next_steps----yo_directive.png
[myapp — zsh — Solarized Dark xterm-256color — 113x31

$ yo angular:controller user
create app/scripts/controllers/user.js
create test/spec/controllers/user.js

$ 1

OEBPS/images/localization----poedit_update.png
Update from Sources

Update from POT File...

Automatically Translate Using TM
Purge Deleted Translations
Validate Translations

Properties... 3P

OEBPS/images/next_steps----yo_provider.png
[myapp — zsh — Solarized Dark xterm-256color — 113x31

$ yo angular:provider api
create app/scripts/services/api.js
create test/spec/services/api.js

$ 1

OEBPS/images/mobile----serve_safari.png
APACHE CORDOVA

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/mobile----gen_cordova.png
] mobile — zsh — Solarized Dark xterm-256color — 74x23

$ cordova create gapapp io.fullstack.gapapp "GapApp"li

OEBPS/images/mobile----ios_sim.png
Carrier ¥ 11:24 PM

Hello from Mobile

OEBPS/images/localization----poedit_new.png
Catalogs Manager

New Catalog...
New Catalog from POT File...
Open... #0

Close 8W

OEBPS/images/mobile----bear_sim.png
Carrier &

A
APACHE CORDOVA

OEBPS/images/chromeapp----first_screen.png
® 06

(. Loading... X) Presently X

s
b

el

]

0941 16

X Elements

Resources Network Sources Timeline Profiles Audits |Console |

> |

9 o= Q

© <topframe>v W Al |(ZE) Warnings Debug

OEBPS/images/chromeapp----full_dates.png
® 06

\Loading... X /) Presently X

el

09 44 07

Monday, October 2013

X Elements

Resources Network Sources Timeline Profiles Audits |Console |

> |

9 o= Q

© <topframe>v W Al |(ZE) Warnings (LIE) Debug

OEBPS/images/chromeapp----wunderground_page.png
® 06 / API | Weather Undergro X \ =

\)

L C [www.wunderground.com/weather/api/ o =

~ Maps &Radar ~ Sev r ~ Photos &Video ~ Community ~ News ~

APIHome Pricing Featured Applications = Documentation = Forums

Reliable data, accurate forecast, & global coverage in 80 languages. About Our API

Key Features WunderMap Layers e
& JSON or XML formatted @

& Easy key management

& Error-logging tools

& Rate-monitoring tools

& Complete geo location service

& Autocomplete API to power geo-search

& Worldwide weather stations network @

OEBPS/images/chromeapp----wunderground_signup.png
® 06 //APIIWeatherUndergrOL X\ \ la
&« ' ¢ [www.wunderground.com/weather/api/d/login.html . '7—,"3‘ » =

Weather ~ Maps & Radar ~ Severe Weather ~ Photos & Video ~ Community ¥ News ~ More ~

APIHome Pricing Featured Applications = Documentation = Forums

Create Your Free Account! Already have a wunderground.com account?
*All fields are required

email

email
password

password forgot password?

confirm password Login))

handle

What's a Handle?

(] lagree to the Terms of Service.

OEBPS/images/chromeapp----tree.png
$ t

5d
N |

[presently — zsh — Solarized Dark xterm-256color — 71x21
ree

css
L— main.css
fonts

S
1: app.js
vendor

L angular.min.js
manifest.json
tab.html
templates

irectories, 5 files

OEBPS/images/chromeapp----load_unpacked.png
Extensions

The new Apps Developer Tools m:
been added to the application list.

Load unpacked extension...
J L

OEBPS/images/chromeapp----first_run.png
® 06 « Loading... X) Presently X

X Elements Resources Network Sources Timeline Profiles Audits |Console |

© » Uncaught Error: [$in%ector:modulerr] http://errors.angularjs.org/undefined/$injector/modulerr?p@=myApp&pl=Errorsk..
oaipkgolgbkihdnpjmbbfpajeopcmpbmss2Fjs%2Fvendors2Fangular.min. js%3A32%3A188) MINERR ASSET:22

Resource interpreted as Font but transferred with MIME type text/plain: "chrome-extension://oaipkgolgbkihdnpimbbfpajeopcmpbm/fonts/DroidSansMono.ttf".

> |

O > Q © <topframe>v W Al |(ZZE) Warnings Debug o1 04 %

OEBPS/images/chromeapp----unformatted_date.png
@06 '\Loading...

c 7| Q

X) Presently X

"2013-10-29T04:35:12.283Z"

X Elements Resources Network Sources Timeline Profiles Audits |Console |

>

O > Q © <topframe>v W Al |(ZZE) Warnings Debug

OEBPS/images/localization----es.png
® O 6 Localize me

Hola Ari
1 libro

Change to Spanish

OEBPS/images/chromeapp----currently.png
21 3/

S 0 S 0 S 0 ',
3 3 3 IQ\
63 63 61 66
53 Sunday Monday Tuesday Wednesday

Now

OEBPS/images/testing----karma----e2e_routes_debug_runner.png
208

: : : : : : _ Karma DEBUG RUNNER , : , : , : , : _
localhost:8080/ karma_/debug.html

0 Errors

describe: E2E: Routes

185ms browser navigate to '/#/'
1ms $location.path()
1ms expect $location.path() toBe "/"

OEBPS/images/testing----karma----e2e_content.png
~Karma DEBUG RUNNER

0 Errors

describe: E2E: Routes

describe: E2E: Content

OEBPS/images/testing----protractor----selenium_install.png
protractor — node — Solarized Dark xterm-256color — 97x26

$./node_modules/protractor/bin/install_selenium_standalone
When finished, start the Selenium Standalone Server with ./selenium/start

downloading http://selenium.googlecode.com/files/selenium-server-standalone-2.35.0.jar...
downloading https://chromedriver.googlecode.com/files/chromedriver_mac32_2.2.zip...
chromedriver_mac32_2.2.zip downloaded to ./selenium/chromedriver_mac32_2.2.zip

OEBPS/images/testing----karma----karma_init.png
(@) Terminal %

$ karma init test/karma-unit.conf.js

Which testing framework do you want to use ?
Press tab to list possible options. Enter to move to the next question.
> jasmine

Do you want to use Require.js ?

This will add Require.js plugin.

Press tab to list possible options. Enter to move to the next question.
> no

Do you want to capture a browser automatically ?

Press tab to list possible options. Enter empty string to move to the next quest
ion.

> Chrome

> Safari

>

What is the location of your source and test files ?

You can use glob patterns, eg. "js/*.js" or "test/**/*Spec.js".
Enter empty string to move to the next question.

>

OEBPS/images/testing----karma----unit_testing_routes.png
(=

$ karma start karma.conf.js

INFO [karma]: Karma v0.10.2 server started at http://localhost:8080/

INFO [launcher]: Starting browser Safari

INFO [Safari 6.0.5 (Mac 0S X 10.8.5)]: Connected on socket j61DkOC5cAI baw_a DD
Safari 6.0.5 (Mac 0S X 10.8.5): Executed 2 of 2 SUCCESS (0.156 secs / 0.022 secs)

Terminal

OEBPS/images/testing----karma----e2e_testing_routes.png
(@) Terminal

$ karma start karma-e2e.conf.js

INFO [karma]: Karma v0.10.2 server started at http://localhost:8080/ karma_/

INFO [launcher]: Starting browser Safari

INFO [Safari 6.0.5 (Mac 0S X 10.8.5)]: Connected on socket -Q-Vf7VILCB2EAGmby38R
Safari 6.0.5 (Mac 0S X 10.8.5): Executed 1 of 1 SUCCESS (0.808 secs / 0.484 secs)

OEBPS/images/testing----karma----e2e_testing_routes_debug.png
Safari 6.0.5 (Mac OS X 10.8.5) is idle

OEBPS/images/server----firebase----create.png
8 0 6 Welcome to Firebase o

Firebase

Create A Firebase

Your Firebase has a unique URL. Your datafives at this URL and is accessble via
« Your browser
« RESTAPI
« JavaScript or Objective-C client libraries

Enter a unique name, such as the name of your application or project.

[https/ [ng-newstetter [frebaseo.com |

Your F

Go directly to my account » ate Eirebase»

OEBPS/images/server----firebase----complete.png
8 0 6 Welcome to Firebase

= Firebase

Getting Started with Firebase

Hooray! Youve just created hitpsy/ng-newsleter frebaselO. con.

Visit itin your browser to view and edit your data, configure security and authentication, and more!

Here's some example code for you to get started quickly!

Social Apps Collaboration Games
Firefeed: A full-featured Twitter-like app Collaborative Drawing, showcasing the Real-time multiplayer Tetris, using only
built entirely with Firebase speed of Firebase Firebase
Chat in only 14 lines of JavaScript Managing client Presence in your app Leaderboards with ordered data
That' it Next you can:

OEBPS/images/testing----karma----running.png
(=

$ karma start test/karma.conf.js
Karma v0.10.2 server started at http://localhost:8080/

INFO
INFO
INFO
INFO
XR

INFO

[karmal] :

[Tauncher]:
[Tauncher]:
[

Terminal

Starting browser Chrome
Starting browser Safari

Chrome 29.0.1547 (Mac 0S X 10.8.4)]: Connected on socket HKjmGm6FC8hBOTkKVP

[Safari

6.0.5 (Mac 0S X 10.8.4)]:

Connected on socket d2WODPEJtWI6sdOGPTXS

OEBPS/images/mobile----project.png
cordova Cordovalib GapApp.xcodeproj

OEBPS/images/mobile----build_in_xcode.png
® OO0

> H | /N GapApp) [l iPhone Retina (3.5-inch)

m QA== B
GapApp
1 target, iOS SDK 7.0

~olconfigxml]
> www

Cordovalib.xcodeproj
© 1 target, iOS SDK 7.0

» (] Classes

4 »

<?xml \

<widges
<N:
<de

</
<al

</z

OEBPS/images/mobile----swipe_example.png
® O 6 Swipe directives 3

From: Ari

To: Q

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

From: Ari

To: Q

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

From: Ari

To: Q

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

From: Ari
To: Q
Ilove you and things and stuff

From: Ari

To: Q

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

From: Ari

OEBPS/images/mobile----cordova.png
® O 6 Agache Cordova e

APACHE

CCO R DOVA"‘ About News Contribute Mailing List Download Quick Links

Apache Cordova is a platform
~for building native mobile
~applications using HTML, CSS

and JavaScript

DOWNLOAD

Cordova version 3.1.0

0 About Apache Cordova™

OEBPS/images/mobile----install_cordova.png
(@) mobile

$ npm install -g cordova
npm http GET https://registry.npmjs.org/cordova
npm http 304 https://registry.npmjs.org/cordova

OEBPS/images/mobile----cordova_generated.png
merges platforms plugins www

OEBPS/images/testing----protractor----selenium_run.png
protractor — java — Solarized Dark xterm-256color — 97%x26

$./selenium/start
Nov 9, 2013 5:58:58 PM org.openga.grid.selenium.GridLauncher main
INFO: Launching a standalone server

OEBPS/images/architecture----dir.png
® O 0 3 app

u 404.html

> ﬁ bower_components
v ﬁ images

u index.html
v ﬁ scripts
IET app.js
ﬁ config
v ﬁ controllers

H mainjs
ﬁ directives

IET myDirective.js
ﬁ filters

> ﬁ services

> ﬁ vendor
v ﬁ styles

ET main.css

v ﬁ views

€© main.html

v

<

v

OEBPS/images/architecture----spec.png
® O 0 [spec

Name

W appSpec.js

config

v

W mainSpec.js

directives

|

W myDirectiveSpec.js

| filters

v

v
w
]
2
a)
13
w

OEBPS/images/digest_loop----digest.png
signin

Swatch list_| oldvalue | new value | diriy? Dirty: true
omall ar@ilstacki | an@iulistackio

Swatch Iist | _old value | new value | dirty?
mail A Ulstack o | @ Hulstack o |false

signin

Dirty: falso

Browser
Dom
ropaint

OEBPS/images/server----aws----iam_google.png
cC n https://console.aws.amazon.com/iam/home?region=us-east-1#roles

Create Role Cancel | X/

Select the identity provider to trust and then enter your Application ID or Audience as supplied by your
identity provider. Users logged into your application from this provider will be able to access resources from
this AWS account.

Identity Provider [oogle :0
Audience 962prs.apps.googleusercontent.corﬂo

Add Conditions (Optional)

‘ Continue ’

OEBPS/images/server----aws----google_create_app.png
® 06 ()Google Cloud Console x|

€« C' f# @ https://cloud.google.com/console?redirected=true#/project/395118764244/apiui/app?show=register if\j » =
Google Cloud Console writeari@gmail.com | Sign out
< ng-newsletter Register new application
You need to register your application to get the necessary credentials to call a Google API.
Overview
Name My A

APls & auth v ApP

APls Platform ® Web Application

Registered apps Android

Consent screen (O]

Notification endpoints Chrome

Native Windows Mobile, Blackbery, desktop, devices, and more
Permissions

Settings

Support

Compute Engine
Cloud Storage
Cloud SQL
BigQuery ©

Cloud Development

Return to original console Send feedback Follow us Privacy & Terms

OEBPS/images/server----aws----google_app_details.png
® 06 ()Goog(e Cloud Console X ®

€ C ff & https://cloud.google.com/console?redirected=true#/project/395118764244/apiui/app/WEB/395118764244-s2cmo60784s60cff707ub3pdi49pas5;... i,/l? » =
Google Cloud Console writeari@gmail.com | Sign out
< ng-newsletter My App Rename Delete
Web Application
Overview Use the controls below to set up your application's authorization credentials. What you select depends on the type of data your application needs to access.
APIs & auth ~ OAuth 2.0 Client ID
Access user data via a consent screen
APIs
Registered apps Download JSON
Consent screen
CLIENT ID
Notification endpoints RN iSRSNI . - oS . oogleusercontent . com
o CLIENT SECRET
Permissions
L)
Billing
Settings CONSENT SCREEN
Support Update
Compute Engine WEB ORIGIN

Cloud Storage http://localhost:9000 - +

Cloud SQL
REDIRECT URI

BigQuery 5 https:// or http://

Cloud Development

Return to original console Send feedback Follow us Privacy & Terms

OEBPS/images/server----aws----iam_create_role.png
IAM Management Console X Y\ {

C' @& [https://console.aws.amazon.com/iam/home?region=us-east-1#roles

Create Role Cancel | X/

O

Specify a role name. You cannot edit the role name after the role is created.

Role Name: google-web-role|

Maximum 64 characters. Use alphanumeric and '+=,.@-' characters

Continue

OEBPS/images/server----aws----iam_web_provider.png
®06 il /AM Management Console X \

https://console.aws.amazon.com/iam/?#roles

Create Role Cancel | X/

— =

CONFIGURE ROLE T SET PERMISSIONS REVIEW

Select Role Type

O AWS Service Roles
O Role for Cross-Account Access
©® Role Web Identity Provider Access

Provide access to web identity providers)
Allow users with Amazon, Facebook, or Google identities to access this AWS account ‘ Select ’

OEBPS/images/server----node----opened_hit.png
Button hits: 1

[HIT ME, if you dare |

OEBPS/images/server----aws----dir_tree.png
$ tree

— aws_policy

— index.html

— scripts

app.js
controllers.js
directives.js
services.js
— styles

L— bootstrap.min.css
L— templates
login.html
main.html

irectories, 9 files

3d
Y |

awsjs — zsh — Solarized Dark xterm-256color — 114x30

OEBPS/images/server----aws----google_create_project.png
® 06 ()Google Cloud Console X

& C' # @ https://cloud.google.com/console?redirected=true#/project?redirected=true

Welcome to the new Google Cloud Console! Prefer the old console? Go back | Dismiss

New Project
Project name ng-test-app
Project ID ¢ strange-firefly-389 C

| have read and agree to all Terms of Service for the Google Cloud Platform products.

[Vf 1'd like to receive email about Google Cloud Platform updates, special offers, and events.

OEBPS/images/server----aws----google_enable_plus.png
® 06 ()Google Cloud Console x \ :

€« C n https://cloud.google.com/console?redirected=true#/project/apps~strange-firefly-389/apiui/api =
GOOS[E Cloud Console writeari@gmail.com | Sign out
< ng-newsletter NAME

Enabled Google+ API

Overview BigQuery API fe]
APIs & auth Google Cloud SQL

STATUS
[ov |
[ov |
APIs Google Cloud Storage m
[ov |
[ov |

Registered apps

Consent screen Google Cloud Storage JSON API fe]
Notification Google+ AP
endpoints
Ad Exchange Buyer API OFF
Permissions
Ad Exchange Seller API OFF
Billing
Settings Admin SDK Cl?
Support
AdSense Host API OFF
App Engine @
AdSense Management API OFF
Compute Engine
Cloud Storage Analytics API OFF
Cloud Datastore Preview i
Audit API OFF

Cloud SQL

Return to original console Send feedback Follow us Privacy & Terms

OEBPS/images/server----node----open.png
Button hits: O

[HIT ME, if you dare |

OEBPS/images/title_page.png

OEBPS/images/server----aws----sqs_status.png
00 /g « 2

€ C' £ https://console.aws.amazon.com/sqs/home?region=us-east-1 o

Services v Ari D. Lerner v N. Virginiav Help v

4, Create New Queue [15 Show/Hide

Filter by Prefix: « @ 1totoftitems » >
Name M ges Availabl M ges in Flight = Created
@] UserCharges 3 0 2013-11-05 02:40:51 GMT-08:00

© 2008 - 2013, Amazon Web Services, Inc. or its affiliates. All rights reserved. Privacy Policy = Terms of Use Feedback

OEBPS/images/server----firebase----3-way-binding.png
e - - O O S S RS S oy,

B 2

— e o s o o oy

L

7

e e e e e e e e e e o o o =

OEBPS/images/server----firebase----firebase_home.png
;%; F“-ebase HowltWorks Tutorial Pricing Customers Docs & Examples Sonp Login

3

RN

Scalable real-time backend

Build apps fast without managing servers

Collaborative drawing in 63 lines ~ // Write a pixel.

$(myCanvas) .mousenove ((e) {
of code. xl = .floor((e.pageX - offset.left) / pixSize - 1);
yl= .floor((e.pageY - offset.top) / pixSize - 1);
pixelDataRef.child(x0 + +y0). (currentColor);
b

1/ Render a pixel.

Build a Sample App in 5 minutes pixelDataRef.on(, drawpixel);

Our Customers:

OEBPS/images/server----firebase----signup.png
800 Sign Up for Firebase

Step 2 Step3

Sign up for Firebase!

Email

ari@fullstack.io

ani@fullstack.com
Password:

gniUpwith

Terms of Service
Privacy Policy

Run script “onjoinBetaClick(:"

OEBPS/images/server----aws----dynamo_create_users.png
0006 /= = \/ \ = N
/ Wl DynamoDB Managemen X Wl S3 Management Console X BStriper %\ W@ Class: AWS.S3 — AWS SC X\ \ 4

& C N https://console.aws.amazon.com/dynamodb/home?region=us-east-1#table:name=Usersltems '7—,"3 » =

Create Table Cancel [X/

PRIMARY KEY

Table Name: Users

Table will be created in us-east-1 region

Primary Key:
DynamoDB is a schema-less database. You only need to tell us your primary key attribute(s).
Primary Key Type: () Hash and Range (s)Hash
(e)String ()Number () Binary

|User email

Hash Attribute Name:

+ Choose a hash attribute that ensures that your workload is evenly distributed
“* across hash keys.
For example, "Customer ID" is a good hash key, while "Game ID" would be a
bad choice if most of your traffic relates to a few popular games.
Learn more about choosing your primary key

OEBPS/images/server----aws----s3_cors.png
® 06 i x
£ https://console.aws.amazon.com/s3/home?region=us-east-1

Services v

Upload Create Folder = Actions v None Properties

All Buckets / ng-newsletter-exay CORS Configuration Editor Cancel X

pName Siorage Clai CORS Configuration for Bucket : "ng-newsletter-example"

The bucket 'r Using CORS (Cross-Origin Resource Sharing) you can selectively allow web applications running on other domains to access content in your Amazon S3
bucket. Each CORS rule must contain the set of origins/domains and HTTP methods you want to allow for those origins. Optionally, you can also
specify the headers users can set in requests or access in responses and the duration the preflight responses should be cached.

Add a new CORS configuration in the text area below, or use the provided sample configuration.

<?xml version="1.0" encoding="UTF-8"7?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>HEAD</AllowedMethod >
<AllowedMethod>GET </AllowedMethod >
<AllowedMethod>PUT</AllowedMethod>
<AllowedMethod>POST</AllowedMethod >
<AllowedMethod>DELETE</AllowedMethod>
<AllowedHeader>*</AllowedHeader>
</CORSRule>
</CORSConfiguration>|

Sample CORS Configurations Save Close

D. Lermner v Gl

Transfers c 0

te ™ View Permissions X

ORS Configuration

m Cancel

» Logging

© 2008 - 2013, Amazon Web Services, Inc. or its affiliates. All rights reserved. Privacy Policy Terms of Use

Feedback

OEBPS/images/server----aws----image_listing.png
000 'm ™ -

[localhost:9000/#/

Home

"id": "101211604571619297135",

"email": "writeari@gmail.com",
"verified_email": true,
"result": {
"id": "101211604571619297135",
"email": "writeari@gmail.com",

"verified_email": true
}
}

[Choose File | No file chosen

Fooback

Welcome back, you've already connected with this app via Google+ Sign-In as Ari Lerner

OEBPS/images/server----aws----app_payment.png
X \ \
A

e

(]

i

[localhost:9000/#/

Home

{
"id": "101211604571619297135",
"email": "writeari@gmail.com",
"verified_email": true,

"result": {
"id": "101211604571619297135",

"email": "writeari@gmail.com",

"verified_email": true

}
}

| choose File | Shining-colors...allpapers.jpg
CVC 123

Card Number 4242424242424242

Submit Payment

Expiration (MM/YYYY) 10

o |

OEBPS/images/server----aws----iam_permissions.png
® 06

IAM Management Console X

&«

C N https://console.aws.amazon.com/iam/home?region=us-east-1#roles '7—,"3 »

Create Role

Edit Permissions

The policy generator enables you to create policies that control access to Amazon Web Services (AWS)
products and resources. For more information about creating policies, see Overview of Policies in Using
AWS Identity and Access Management.

Effect Allow ® Deny O

AWS Service AWS CloudFormation

Actions | -- Select Actions --

Amazon Resource Name ',

(ARN)
Add Conditions (Optional)

Add Statement

Action Resource

s3:GetObject arn:aws:s3:::uploads/*
s3:PutObject

Continue

OEBPS/images/server----aws----iam_summary.png
000 /5 x

= 5 ' https://console.aws.amazon.com/iam/home?region=us-east-1#roles i:?
Services v AriD. Lerner v Global v Help ~
Dashboard | [| Role Actions v ¢ & O
4
Details Viewing: Q X 1to1of1ltems
Groups Role Name Creation Time
Users
o google-web-role 2013-11-04 17:21 PST
Roles

Password Policy

1 Roles Selected

M Role: google-web-role [_| ™ ™
| Permissions | | Trust Relationships | | Summary
Role ARN arn:aws:iam:: 1 GHSSESSNEP. role/google-web-role

Instance Profile ARN(s)

Path /

Creation Time 2013-11-04 17:21 PST

© 2008 - 2013, Amazon Web Services, Inc. or its affiliates. All rights reserved. Privacy Policy =~ Terms of Use Feedback

OEBPS/images/validations----sign_up_form.png
Signup form

Your name

‘ Name

Your email Username

‘ Email ‘ ‘ Desired username m

OEBPS/images/directives----simple_directive.png
O s sresei—————— S sttt ————————————————
Click me to go to Google

OEBPS/images/directives----devtools1.png
® 006 Developer Tools - file:///tmp/index.html |
- Resources Network Sources Timeline Profiles Audits Console

<!DOCTYPE html>
¥ <html>
» <head>..</head>

Styles | Computed Event Listeners »
element.style { + B B
}

Vv <body ng-app="myApp" class="ng-scope'">
v <div>
</div>
» <script type="text/javascript'>..</script>
</body>
</html>

EL >= Q html body.ng-scope |div #

OEBPS/images/databinding----scope-parents.png
$scope (My Controller)

$scope prototypal inheritance

OEBPS/images/controllers----nested_controllers.png
y hello
{"greeted":true,"name":"Ari Lerner"}

OEBPS/images/databinding----nested-scope-parents.png
< Sraseope >

A
ParentController $scope | person
X
Childcontroller $scope | sayHello()

$scope prototypal inheritance

OEBPS/images/expressions----interpolation.png
® O O chapter5-expressions app10 Interpolating app

To: nate@fullstack.io

hello__to_,
Thanks for taking the time to respond to my email.

Your friend,
Ari

Email body

hello nate@fullstack.io,
Thanks for taking the time to respond to my email.

Your friend,
Ari

OEBPS/images/chromeapp----chicago.png
@06)Loading... X)/ Presently

p C A

Q|

03 06 31

Tuesday, October 2013

5 5 -

63 64 57 -

X Elements | Resources | Network Sources Timeline Profiles Audits Console

v £ IndexedDB
Local Storage

Key
presently

v

Value
{"location":"60290.1.99999","timezone":"America/Chicago"}

OEBPS/images/chapter1----hello_world.png
Hello world

OEBPS/images/chromeapp----hawaii.png
® 06)Loading... X) Presently X

s
b

& ! A

Q|) »

]

10 06 45

Monday, October 2013

> > > >

L L
L L L L

X Elements | Resources | Network Sources Timeline Profiles Audits Console

Ve e

él . Key Value
v HICEXE presently {"location":"96718.1.99999","timezone":"Pacific/Honolulu"}

OEBPS/images/debugging----batarang_install.png
@06 & Chrome

&«

Web Store - An X \ Y

C' @ https://chrome.google.com/webstore/detail /angularjs-batarang/ighdmehidhipcmcojjgiloacoafjmpfk/details

~ chrome web store writeari@gmail.com
’
o5 Angular]s Batarang
m Foddok - (128) Developer Tools from Angular|S 65,227 users
bl OVERVIEW DETAILS REVIEWS RELATED
Recommendy
Collections
Description 2 e

Business Toolg
Education
Entertainment
Games
Lifestyle

News & Weath
Productivity
Social & Comn

Utilities

Extensions

Themes

Extends the Developer Tools, adding tools for debugging and profiling Angular)S
applications.

© Report Abuse

Version: 0.4.3
Updated: June 26, 2013
Size: 1.33MB
Language: English

OEBPS/images/views----simple.png
Hello World

OEBPS/images/controllers----controller_object.png
{"name":"Ari Lerner"}
and their name:

Ari Lerner

OEBPS/images/chromeapp----sessionStorage.png
® 06 « Loading... X) Presently X

€ cfalQ

Settings

CA/San_Francisco

X Elements |Resources| Network Sources Timeline Profiles Audits Console

v EiWeb SQL Key Value

v g IndexedDB presently {"location":"CA/San_Francisco"}
Local Storage
chrome-extension:/...
Session Storage

£=/chrome=extension:/:..

v ECookies
[Z oaipkgolgbkihdnpjm...
v B8 Annlicatinn Cache

2, 5 Q ¢ | x

OEBPS/images/chromeapp----newyork.png
00 /, X \@

i

11 37 05

Monday, October 2013

o o > >

54 59 0 .

Wednesday Thursday Friday
X Elements | Resources | Network Sources Timeline Profiles Audits Console
— 7 Key Value
M Ei Web SQL presently {"location":"NY/New_York"}

v £ IndexedDB
v E= Local Storage
E=l chrome-extension:/...

v £ Session Storage

£= chrome-extension:/...

OEBPS/images/chromeapp----autofill.png
®06) Loading...

X) Presently x \(__ e
€ - CcfnQ w =
Settings
New York] I
New York City, New York

New York Mills, New York

New York Mills, Minnesota

New York

New York JFK, New York

New York Mills Municipal, Minnesota
New York Skyports INC., New York

&

X Elements Resources Network Sources Timeline Profiles Audits |Console |

>

Q O <topframe>v ¥ Al [(EZE) Warnings Debug

OEBPS/images/chromeapp----timezone.png
 Loading... x) Presently x \\ ®

€« cC f|Q kA

Settings

Phoenix

X Elements | Resources | Network Sources Timeline Profiles Audits Console

ooy
v £ web sQL

v £ IndexedDB

Local Storage
chrome-extension:/...
v EE Session Storage
0, Q ¢ X £

Key Value
presently {"location":"85001.1.99999","timezone":"America/Phoenix"}

OEBPS/images/chromeapp----wunderground_api_debug.png
00 /(

{

10 33 43

Monday, October 2013

"forecastday": [

{

"date": {

1

"epoch": "1383026400",

"pretty": "11:00 PM PDT on October 28, 2013",
"day": 28,

"month": 10,

"year": 2013,

"yday": 300,

"hour": 23,

"min": "00",

"sec": O,

"isdst": "1",

"monthname": "October",
"weekday_short": "Mon",
"weekday": "Monday",

"ampm": "PM",

"tz_short": "PDT",

"tz_long": "America/Los_Angeles"

OEBPS/images/chromeapp----clean_html_view.png
i

10 42 40

B e

Tuesday Wednesday

Thursday

OEBPS/images/chromeapp----settings_one.png
® 006 (Loading...

x)

. c A
€ C | Q

Presently

Settings

autoip

&

OEBPS/images/server----node----create.png
o

tmp — zsh — Solarized Dark xterm-256color — 80x24

$ express myApp =

create : myApp

create : myApp/package.json
create : myApp/app-.js

create : myApp/public

create : myApp/public/javascripts
create : myApp/public/images
create : myApp/public/stylesheets
create : myApp/public/stylesheets/style.css
create : myApp/routes

create : myApp/routes/index.js
create : myApp/routes/user.js
create : myApp/views

create : myApp/views/layout. jade
create : myApp/views/index.jade

install dependencies:
$ cd myApp & npm install

run the app:
$ node app

$ 1

OEBPS/images/server----node----express.png
Express

Welcome to Express

OEBPS/images/directives----devtools7.png
[asiecom] Clickne 0 80 0 Google

% | Elements | Resources Network Sources Timeline Profiles

v<htnl ng-app="myApp" class="ng-scope">
> <head>.</head>
v <body>
b <div my-directive some-attr my-link-text="Click
me to go to Google">.</div>
b <scripts.</scripts
</body>
</htal>

rRT—

OEBPS/images/directives----devtools8.png
Treir URL field:
My Url Field: |http://google.c Click me to go to Google

% | Elements | Resources Network Sources Timeline Profiles /

“ng-valid ng-girty"s
<a href="http://google.c" class="ng- .
binding">Click me to go to Google/a> S

</giv>

] Q [htming-scope

]

OEBPS/images/directives_explained----directive2.png
® O 6 directives.html

Inside Div Two:

Inside Div Three: data for 3rd property
Inside Div Four: data for 3rd property

OEBPS/images/directives_explained----sidebox.png
Links

e First link
e Second link

TagCloud

Graphics AngularJS D3 Front-end Startup

OEBPS/images/directives----inspect_element.png
Click meto gote “~~~"~ =
Open Link in New Tab

Open Link in New Window

Open Link in Incognito Window

Save Link As...

Copy Link Address

Copy

Search Google for 'Click me to go to Google'
Print...

€ Apps >
£ Buffer Selected Text

¥ Read this link later

® Share link with TweetDeck

Inspect Element

Look Up in Dictionary
Speech
Services

A\ 4

OEBPS/images/next_steps----yeoman_gen.png
$ tree -I 'node_modules|bower_components'

— Gruntfile.js

404.html
favicon.ico
images
glyphicons-halflings-white.png
glyphicons-halflings.png
index.html
robots.txt
scripts
app.js
controllers
main.js
styles
L main.scss
views
L— main.html

bower. json
karma—-e2e.conf.js
karma.conf.js
package. json

test

runner.html

spec

L— controllers
L main.js

irectories, 17 files

myapp — zsh — Solarized Dark xterm-256color — 139x38

OEBPS/images/directives----devtools2.png
® 06 Developer Tools - file:///tmp/index.html
- Resources Network Sources Timeline Profiles Audits Console

<!DOCTYPE html>
¥ <html>
» <head>..</head>
Vv <body ng-app="myApp" class="ng-scope'">
v <div>

v <my-directive>
Click me to

go to Google
</my-directive>
</div>
» <script type="text/javascript'>..</script>
</body>
</html>

n‘ >@> Q html 'body.ng—scope |d|v |my—d|rect|ve n

Styles | Computed Event Listeners »
element.style { + R B
}

a:-webkit-any- user agent stylesheet
link {
color: —webkit-link;
text-decoration: underline;
cursor: auto;

b

OEBPS/images/next_steps----yo_route.png
@)

myapp — zsh — Solarized Dark xterm-256color — 113x31

$ yo angular:route dashboard =

invoke angular:controller:/usr/local/share/npm/lib/node_modules/generator-angular/route/index.js
Ccreate app/scripts/controllers/dashboard.js

Ccreate test/spec/controllers/dashboard.js

invoke angular:view:/usr/local/share/npm/lib/node_modules/generator-angular/route/index.js
create app/views/dashboard.html

OEBPS/images/directives----devtools3.png
® 06 Developer Tools - file:///tmp/index.html
- Resources Network Sources Timeline Profiles Audits Console

<!DOCTYPE html>
¥ <html>
» <head>..</head>

Styles | Computed Event Listeners »
element.style { + R B
}

a:-webkit-any- user agent stylesheet
link {
color: —webkit-link;
text-decoration: underline;
cursor: auto;

b

Vv <body ng-app="myApp" class="ng-scope'">
v <div>
to Google
</div>
» <script type="text/javascript'>..</script>
</body>
</html>

n‘ >@> Q html 'body.ng—scope |d|v n

OEBPS/images/directives----devtools4.png
® 06 Developer Tools - file:///tmp/index.html l

- Resources Network Sources Timeline Profiles Audits Console

<!DOCTYPE html>
¥ <html>
» <head>..</head>
Vv <body ng-app="myApp" class="ng-scope'">
v <div>
<a href my-directive my-url="http://

google.com" my-link-text="Click me" class=
''ng-binding">
</div>
» <script type="text/javascript'>..</script>
</body>
</html>

Styles | Computed Event Listeners »

element.style { + R B
}
a:-webkit-any- user agent stylesheet

link {
color: —webkit-link;
text-decoration: underline;
cursor: auto;

b

n‘ >@> Q html |body.ng—scope |div a.ng-binding #

OEBPS/images/tools----running_lineman.png
A Lineman Angular Setup

username password

OEBPS/images/next_steps----bower_help.png
(@) doo

Usage:

bower <command> [<args>] [<options>]

Commands :
cache Manage bower cache
help Display help information about Bower
home Opens a package homepage into your favorite browser
info Info of a particular package
init Interactively create a bower.json file
install Install a package locally
link Symlink a package folder
list List local packages
lookup Look up a package URL by name
prune Removes local extraneous packages
register Register a package
search Search for a package by name
update Update a local package
uninstall Remove a local package
Options:
-f, --force Makes various commands more forceful
-j, --json Output consumable JSON
-1, --log-level What level of logs to report
-0, --offline Do not hit the network
-q, --quiet Only output important information
-s, --silent Do not output anything, besides errors
-V, --verbose Makes output more verbose
--allow-root Allows running commands as root

See 'bower help <command>' for more information on a specific command.

$

OEBPS/images/next_steps----yeoman_inst.png
) myapp — node — Solarized Dark xterm-256color — 80x24
$ mkdir myapp && cd $_

$ yo angular

[?] Would you like to include Twitter Bootstrap? (Y/n) JJ

OEBPS/images/next_steps----yeoman_run.png
myapp — node — Solarized Dark xterm-256color — 80x24

$ grunt server B
Running "server" task

Running "clean:server" (clean) task

Running "concurrent:server" (concurrent) task

OEBPS/images/debugging----upbeat_models.png
® 06 / OUpbeat—The Internet's x \ 1\

cC n https://www.upbeatapp.com

*‘» =

ugaaat

A

Sign L|Z| Sign In

roomld:
invalid: false

All ‘ loadingList: true New
page_delegator: valid

Pop set: [...]

current_page: 0
Electre loading_modal: false
loading: false

Queue @

Holy Ghost! - It Gets Dark
submitted 5 hours ago by datam0$h to Electronic

(+) ﬁ? & 29 plays

Q

song of the day

Urban ©OrderPredicate: rank
login_status: not logged in

Rock selectedGenre: All
niches: [...]

Metal user: { ... }
lazyLoadMoreSongs: undefined
sortPredicate: created_at
init: undefined
searchOptions: { ... }
showSignIn: undefined
showSignUp: undefined

bout F getView: undefined .
etMoreSongsDelegator: undefined

Y-UNG
MAD-NNA

Tuxedo - Do It
submitted 2 hours ago by boss_dude to Indie-Pop
O ﬁ? & 11 plays

Smallpools - Dreaming
submitted 3 hours ago by boss_dude to Acoustic

Ow &

D-WHY - Young Madonna (Prod. Dave Cappa)
submitted a day ago by volty41 to Urban

Can't Decide?

Play All

X Elements Resources Network Sources Timeline Profiles Audits Console 'Angular]S‘

Models Performance Dependencies Options Help

Scopes

< Scope (002)
< Scope (003)

Enable

Models for (000)

{
genre: Pop

Enable Inspector

A29|#

OEBPS/images/debugging----upbeat_perf.png
eo00 /o x

€ C' 1 & https://www.upbeatapp.com/?track=1696

7{\3 » =

UpbeOt Sign Up | Sign In

Hot New Queue @

Caaalifornia (The Soundmen
Remix)
French Horn Rebellion

All
FRENCH HORN REBELLION
Pop A JMSN - The One ('tPllajét' out Nov. 5)
12 submitted 5 days ago by datamO$h to Electronic ﬂ l. / 3
v 7 357 plays
Urban i i « 1] IZI
a Dino Soccio - Another Love
About How It Works tvy f 29 submitted 9 days ago by conner to Electronic O
h 4 431 pla
X Elements Resources Network Sources Timeline Profiles Audits Console |Angular)S |
Models F D denci Options Help v Enable
Performance
Log to console
Watch Tree Watch Expressions
Scope (002) | toggle songInSet(song) |14.8% | 17.80ms
o toggle function (){var a=d.url(),b=f.$$replace;if(!m||a!=Ff.absUrl())m++, _
e function (){return c.hash()}
song.plays 0 number tThreshold 12.8% | 15.39ms
Scope (003 toggle {{(song.plays || 0) | | g 3 6|
e playing _
i "evSong.genre {{song.art_url.replace('http:', 'https:')}} |6.75% |8.100ms
e pane_delegator != 'about' -
e pane_delegator == 'about'
e activeNavigation() songClasses (song) |5.59% |6.715ms
e current_user.username -
e activePlayer()
e login_status {{song.votes}} |3.89% |4.666ms
e pane_delegator -
e subview_delegator
e activeNavigation() {{song.created at}} |2.88% |3.456ms
e player_delegator == 'set' .
9 > Q 029

OEBPS/images/debugging----upbeat_deps.png
00 /o \@
PR

a

& https://www.upbeatapp.com/?track=1696

UpbeOt Sign Up | Sign In

w

All

Hot New Queue @

Pop A JMSN - The One ('tPllajét' out Nov. 5)
12 submitted 5 days ago by datamO$h to Electronic
v Y 357 plays
Urban . .
a Dino Soccio - Another Love
About How It Works tvy f 29 submitted 9 days ago by conner to Electronic
h 4
X Elements Resources

431 pla
Network Sources Timeline Profiles Audits Console [Angular)S |

Models Perf D d

Options Help v Enable

Caaalifornia (The Soundmen

FRi E INC H

Remix)
French Horn Rebellion

HORN

REE BZE LJL1ED N

77

«

VAN

Service Dependencies

c
P &
4 3 " g
2 3 & &
%, 9 g g
w 5 3 £ £
% % 2 8 &
< ,9 < ko] O
2 = o “ X
%, / > / < Q
e, e
o y)
o
D’EWeW S\og
OneAtATimeFilter — $rootScope
“D-“-ec’f\\le $Wind°w
initeSCr®
J “n
2\ Q.
A._-.\\o\d 7 Db
o> Q

029 ¥

OEBPS/images/debugging----upbeat_opts.png
00 /o x

) https://www.upbeatapp.com/?track=1696 o5 =
U p b eOT ‘Sign Up | Sign In Submit Song Caaaliforni; (Th.e)Soundmen
N | emix
French Horn Rebellion
All Hot New Queue @
FRENEH HORN RERFELLIDN
Pop UMSN - The One ('tPllajét' out Nov. 5)] D
submitted 5 days ago by [datam0$h| to [Electronic & . .
ectro B57 plays |
Urban [Dino Soccio - Another Love] |:| FEAT. GHOST BEACH
submitted 9 days ago by to
rock 18 G5t pays]
Metal
Yeasasyer - Henrietta |:|
submitted 9 days ago by to
want subgenres? | I:I
s f
asB
‘v ™
|French Horn Rebellion - Caaalifornia (The Soundmen Remix)| |:|
submitted 11 days ago by to
SR (g v]
About How It Works tyf o
o | : | Madeon - Icarus |:|

X Elements Resources Network Sources Timeline Profiles Audits Console |Angular)S |

Models Perf Dey lenci Options Help v Enable
Options Info
« Show applications Angular version: 1.1.5